
Summary and conclusion1

A thread on UML issue2837 originated with a message from Juergen Boldt dated Wed, 11
Aug 1999: "role concept in UML remains rather vague" where he said that

>> So what are roles? It seems that in UML they are not types (or
>> classifiers), but a positive definition (other than the equally vague
>> glossary entry) would seem imperative!

I tried to answer the question by quotes from Egil Andersen's thesis. These quotes were
clearly insufficient to answer the question, and there has now been a long and interesting
discussion in the thread. I have studied the communications so far and use them as a
background for an explanation of what I believe could or should be the semantics of the
UML Collaboration.

Here is a summary of the paper:

1. The class. Any abstraction is based on a choice of what is important and what isn't. The
highly successful and useful class abstraction is the result of one such choice. It is
useful for modeling many interesting aspects of objects. A notable exception is the
modeling of system behavior; the class abstraction deals in sets of objects and is not
suited for modeling how an object sends a stimulus (a signal or an invocation of an
operation) to another object as part of an overall conversation.

2. The instance level collaboration. The instance level collaboration shows how objects
work together for a common purpose. It models their conversation very nicely, but it is
too concrete and specific for all but the simplest cases. I propose an extension of UML
1.3 that defines the abstract syntax of the instance level collaboration and binds it to the
existing specification level collaboration in Appendix 1.

The specification level collaboration. The specification level collaboration is more
powerful because it is more abstract. It retains the capability of modeling object
conversation and adds capabilities for modeling generalized interaction patterns. It also
handles cases with cardinality more than one; this is discussed in section 10.

3.

Separation of concern. Three techniques are discussed: The arbitrary filtering
permitted for class diagrams; components that separate on services, hiding their
complexity; and collaborations that separate on system behavior.

4.

UML Collaboration semantics
A green(?) paper

 Trygve Reenskaug
 Version of November 8, 1999

991108 - Added sections on separation of concern, virtualRoles, and abstract interactions.
991027 - Bug fixes. Improved conformance with UML terminology and definitions (but UML 1.3 itself is fairly inconsistent). Chapter on
"Specialization of a Collaboration" removed. OOram synthesis is a powerful construct, but its possible inclusion in UML should be postponed until
the Collaboration fundamentals are clear.
991019 - Several clarifications. Object identity defined in terms of message sends. Defined the notion of an instance level collaboration. Defined
ClassifierRole in terms of its instances. Used UML notation for state diagrams.
990920 - first version

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of November 8, 1999. Page 1

5. Higher level collaboration abstractions with virtualRoles. Collaborations are often too
precice and detailed for overviews and early architecture work. VirtualRoles (stereotype
of package) permit arbitrary grouping of classifier roles. This hides the detailed object
structure without weakining the collaboration semantics.

6. Abstract interactions. The basic collaboration specifies interactions in terms of message
flow. This may be too detailed for overviews and early architecture work. I propose to
use UML comments to name interactions and identify their communication paths
(AssociationRoles).

Typing the AssociationEndRoles. Typing the object references gives improved control
over architecture and system design.

7.

8. The Object-Role-Class trichotomy. Quite simple, really. (I do not discuss the use of the
forward slash):

"The concrete object"
/ "The role it plays in the collaboration"
: "The class or classes that can implement it"

System behavior, messages and cardinalities > 1. An example illustrates how the
behavior of the system as a whole can be composed from descriptions of individual
ClassifierRole behavior. I also consider the case where there are more than one object
playing a given role.

9.

Appendix 1: Instance level and specification level collaborations. I propose abstract
syntax and constraints for the collaboration concept.

10.

Appendix 2: Glossary. Extracts from the UML 1.3 glossary + a few proposals11.

My conclusion

The Collaboration abstraction is, and should be, an integral part of UML. It
complements the class abstraction and is particularly useful for architectural models
on all levels and for modeling patterns and frameworks.

1.

The abstract syntax of the specification level Collaboration and its elements in UML
1.3 is basically OK, but the instance level collaboration needs to be added and linked
to the specification level to complete the semantics definition.

2.

Acknowledgements
My sincere thanks to Alistair Cockburn, Sridhar Iyengar, Bran Selic, James Rumbaugh, Jos
Warmer, and Gunnar Overgaard for valuable comments.

The class2

UML 1.3 defines the notion of class as follows:

class [UML 1.3 glossary]
A description of a set of objects that share the same attributes, operations, methods, relationships,
and semantics. A class may use a set of interfaces to specify collections of operations it provides
to its environment. See: interface.

Version of Version of November 8, 1999 at 10:59. Page 2Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

The UML class abstractions can be described as follows:

1. Objects are encapsulations of data and behavior.

Objects are instances of classes.2.

Associations between two or more classes specify links between their instances.3.

An operation describes a service that can be requested from an object to effect behavior.4.

An example illustrates what this definition covers and doesn't cover. The following class
diagram illustrates how a Person is the child of a Man and a Woman:

WomanMan

Person

father

1

child

*

child

*

mother

1
*

spouse

spouse

*

Figure 1. A class diagram

A very powerful model capturing a world of information in three simple classes. The
number of instances of class Person in the world today exceeds 6 billion. In addition, there
are all the people of the past. Should we guess 9 billion instances all told? About half of
them are also instances of class Man, another half instances of class Woman. A person has
exactly one mother and one father; both men and women can have many children. The
many-to-many association between Man and Woman has no moral implications; it is
sufficient that a widow or widower may remarry.

What about behavior? The class abstraction models attributes and operations. So it
describes what the object knows and the services it offers to its environment. Let's add a
cashInHand attribute and two simple operations:

WomanMan

father

1

child

*

child

*

mother

1
*

spouse

spouse

*

Person

cashInHand

cashRequested()

cashReceived()

Figure 2. A class diagram with attributes and operations

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 3

The class abstraction deals in sets of Instances and sets of Links. This makes it hard to
model how an object sends a stimulus to another object; some kind of a broadcast message
is the closest we can get. In the model above, a person can own cash; receive cash, and be
asked for cash. But we cannot describe that a person gives cash to another person because
there is no way of identifying the particular receiver among the many billion of possible
receivers.

The instance level Collaboration3

Objects are often described as entities having state, behavior, and identity. Objects send
stimuli to other objects in order to trigger their services. The class abstraction hides two of
these notions; namely the notion of object identity and the notion of an object sending a
stimulus to another object. These two characteristics are closely related: the specification
of a message send includes the specification of the identity of the message receiver.

Despite its undisputed success, the class abstraction is based on a choice of what is essential
and what isn't. It is both possible and useful to make other choices that will lead to other
abstractions. In particular, the Collaboration abstraction models object identity and message
sending. This makes it useful for modeling the behavior of a system of collaborating objects
since we can model both the sending and the receiving messages.

In the Collaboration abstraction, the "essence" of an object is as follows:

1. An object has a unique identity.

An object collaborates with other objects by receiving stimuli from them and by
sending stimuli to them.

2.

An object is encapsulated so that its internal construction is invisible from its outside.
The visible behavior consists of the stimuli it can receive from its collaborators and the
stimuli that each of them can cause it to send to its collaborators. The state is only
visible indirectly: a state changes causes a change in behavior. (e.g. that the object
returns a different value in response to a query).

3.

UML 1.3 distinguishes clearly between instance level collaborations and specification level
collaborations. But this distinction is only apparent in the textual definitions of semantics
and in the notation. The notion of an instance level collaboration is not shown in any syntax
diagram. I have tried to remedy this with a new metamodel diagram given in Appendix 1.

A collaboration can be defined as follows:

Collaboration [My proposal]
A Collaboration describes how a number of objects work together for a common purpose. There
are two aspects. The structural aspect is a description of the responsibilities of each object in the
context of the overall purpose of the collaboration; and also the links that connect the objects into
a communicating whole. The dynamic aspect is a description of how stimuli flow between the
objects to achieve the common purpose.

The meta-language of UML semantics is English, so I need to add:

Version of Version of November 8, 1999 at 10:59. Page 4Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

structure [Webster]
2b: something arranged in a definite pattern of organization <a rigid totalitarian structure>
4b: arrangement or interrelation of parts as dominated by the general character of the whole
<economic structure>

Consider a CollaborationInstance with three objects: My father, my mother, and myself.
The names of these objects are Bjarne, Gina, and Trygve as shown in this figure:

Trygve : Person

Gina : WomanBjarne : Man

father mother

Figure 3. An instance level collaboration

It is now meaningful for me to ask my mother for some cash and get it:

Gina : WomanTrygve : Person

cashRequested($25)

cashReceived($25)

Figure 4. An instance level sequence diagram

This is beautifully concrete. There is no doubt as to who I ask for money, and the money is
payed to me, not my brother. An instance level Collaboration can be very illuminating for
describing the architecture and behavior of simple object structures. But it is too specific for
more complex systems. For example, strictly interpreted the above model applies to me and
my mother only. We would need a new model to show how my brother can get money from
our mother. The specification level abstraction lifts the power of describing system
behavior to a more general level.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 5

The specification level Collaboration4

We generalize the idea of a collaboration by representing the objects by ClassifierRoles,
naming them by the name of the position they hold in the object structure.

position [Webster]
4a: the point or area occupied by a physical object <took her position at the head of the line>
5a: relative place, situation, or standing <is now in a position to make important decisions on his
own>

Our simple family example again:

/ Child

/ Mother/ Father

/ Mother/ Child

cashRequested()

cashReceived()

Figure 5. A specification level collaboration with sequence diagram

The object has been replaced by a slot that can hold an object; it names the role that the
object plays when it occupies this position. The slots are called ClassifierRoles, they form a
pattern that is instantiated again and again: Even at my ripe old age I play the Role of Child
in relation to my Mother and Father. I also play the role of Father in relation to my
daughter. etc. etc.

Notice that the parts have very little meaning when isolated from the whole. Indeed, in
UML 1.3 the ClassifierRoles form a composition aggregate under the Collaboration; they
are considered meaningless outside this context.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 6

Instantiating class Man gives an instance of Man.

In contrast, it is meaningless to instantiate a ClassifierRole in isolation. The role gets its
meaning from its position in the Collaboration and can only be instantiated in this context.
For example, instantiating the /Father role involves the following:

1. Select a suitable factory object.

2. Ask the factory object for an instance that has the features needed to play the role.

Connect the resulting object into the collaboration structure. For example, this may
involve linking the father object to the child and mother objects, as well as linking the
mother and child objects to the father object.

3.

The definition of a Collaboration still stands:

Collaboration [My proposal]
A Collaboration describes how a number of objects work together for a common purpose. There
are two aspects. The structural aspect is a description of the responsibilities of each object in the
context of the overall purpose of the collaboration; and also the links that connect the objects into
a communicating whole. The dynamic aspect is a description of how stimuli flow between the
objects to achieve the common purpose.

We also need to define how the model elements on the specification level relate to the
elements on the instance level:

ClassifierRole [My proposal]
A named slot for an object participating in a specification level Collaboration. Object behavior is
represented by its participation in the overall behavior of the Collaboration. Object identity is
preserved through this constraint: "In an instance of a collaboration, each ClassifierRole maps
onto at most one object."

Note that the constraint is asymmetrical. An object can play several roles in one or more
Collaborations.

The whole is greater than the sum of its parts. So the focus is on the collaboration as a
whole because it has a value that exceeds the collective value of the objects taken
separately. The important questions that can be asked from a collaboration are questions
such as "What does it achieve?", "What are its objects?", "What are their responsibilities?",
and "How do they interact?". A question that is of secondary importance is "How are its
objects constructed?". This question is answered by giving a reference to the appropriate
class or classes. Conversely, a class description can include a reference to relevant
ClassifierRoles and their Collaborations.

A ClassifierRole may be thought of a a slice of a Class. But this is an oversimplification; it
ignores its essential relationship to the Collaboration as a whole. A better metaphor is to
think of a ClassifierRole as specifying a slice of an object; namely its AttributeLinks,
Links, and behavior that it needs as a participant in the collaboration.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 7

5 Separation of concern

In the last chapter of A discipline of programming from1976, Dijkstra said that:

"To my taste the main characteristic of intelligent thinking is that one is willing and able to study in depth an
aspect of one's subject matter in isolation, for the sake of its own consistency, all the time knowing that one
is occupying oneself with only one of the aspects. ...

"The other aspects have to wait their turn, because our heads are so small that we cannot deal with them
simultaneously without getting confused. This is what I mean by 'focusing one's attention upon a certain
aspect'; it does not mean completely ignoring the other ones, but temporarily forgetting them to the extent
that they are irrelevant for the current topic. ...

"Such separation, even if not perfectly possible, is yet the only available technique for effective ordering of
one's thoughts that I know of. ...

"I usually refer to it as 'separation of concerns', because one tries to deal with the difficulties, the
obligations, the desires, and the constraints one by one. ...

We will explore three techniques for separation of concern that are more or less available in
UML:

Filtered class diagrams offer unspecified separation. A class diagram can show a
filtered view of an arbitrary selection of classes.

1.

Components separate on services. A component offers certain services (operations) to
its clients while it hides the realizations of these services.

2.

3. Collaborations separate on system behavior. One collaboration model describes how a
system of interacting components realize one or more operations or use cases.

Filtered class diagrams offer unspecified separation5.1

For an interesting system, the complete class diagram will be very complex. It is therefore
permissible to show arbitrarily filtered views of the diagram. Classes, features, and
associations may be hidden in order to highlight some interesting aspect of the system

In UML 1.3 Semantics, section 2.3.4, we find:

¤ Every time a word coinciding with the name of some construct in UML is used, that construct is
referenced.

So it is quite simple, if somewhat tedious, to find out the full meaning of a term such as
classifier. Start on the first page and read the complete document carefully. Collate all the
places where the term is used, and you have the complete description.

Filtered class diagrams is the weakest technique for separation of concern. When possible,
it should be replaced by one or both of the other techniques.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 8

5.2 Separation of concern with components

There are many definitions of components such as Enterprise Java Beans. To my mind, a
component is essentially a "super-object"; an encapsulated realization of a service:

A Component has a single access point (an object ID) and offers a well-defined
interface to its clients.

1.

2. A Component is reused by cloning

3. A Component does not make assumptions about its clients

A Component plays a standardized role within a container4.

Tools are used to deploy components and compose systems 5.

Components serve the separation of concern to the extent that they hide complexity and
offer well-defined interfaces to their clients.

The following figure illustrates two chained components, the second one being itself
composed from three components.

Figure 6. The object nature of components

Standards for shipping objects are still immature. We therefore usually package components in a more
primitive form. An example is to use a Java .jar-file containing the necessary classes and other resource
files together with rules for their instantiation.

One can think of the component technology as a horizontal separation of concern as
illustrated in the following figure.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 9

«EJB»

BeanExample

Figure 7. Horizontal separation of concern by object clustering in the horizontal plane.

Work is in progress to find more precise ways of representing components in UML. Two
possible starting points are the UML component and the UML subsystem. For our purposes,
the subsystem is the best choice because it is a child of classifier. It can therefore be the
base of a ClassifierRole and our semantics is still valid.

5.3 Separation of concern with collaborations

The collaboration models how a society of collaborating objects realizes certain behavior.
The separation of concern is achieved by letting each collaboration specify the part of the
total behavior and the state that supports this behavior:

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 10

Object

A

Object

B

Object

C

Object

D

Collaboration

for

Use case / operation

UC 2

Collaboration

for

Use case / operation

UC 1

Figure 8. Vertical separation of concern by collaborations

Higher level collaboration abstractions with virtualRoles6

Consider the graph of an activity network as shown in this example:

Activity-F

20 (4) 24

Activity-E

13 (7) 20

Activity-D

13 (3) 16

Activity-C

8 (5) 13

Activity-B

8 (4) 12

Activity-A

5 (3) 8

Duration

Completion time

Start time

Figure 9. An activity network.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 11

A program implementing such networks can take many forms. We assume an object
oriented solution where we separate the presentation from the model. Here are three
possible designs:

/ NetworkView / NetworkModel

/ NetworkView

/ ActivityView

/ NetworkModel

/ ActivityModel

1 1

1 1

1 1

* *

(a) Simple Model - View structure

(b) Add Activities and their views,

but without links between them.

(c) Add direct links between

Activities and their views.

/ NetworkView

/ ActivityView

/ NetworkModel

/ ActivityModel

1 1

1 1

* *

1 1

Figure 10. Three designs for the activity network program.

Many other solutions are possible. What they have in common is that the choice is a design
decision that we would probably like to postpone to a late stage in the design process.

So how do we express a collaboration model where this decision is left open?

A solution is to adapt the OOram notion of a virtualRole. A virtualRole is a symbol that
represents an arbitrary set of roles without in any way altering the semantics of the model.
In UML, we can use the package meta-object and constrain it to contain a structure of
ClassifierRoles. We could, for example, define a stereotype of package called
«virtualRole». The above three design solution and many others can then be represented by
a single collaboration as shown below.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 12

«virtualRole»
/ View

«virtualRole»
/ Model

Figure 11. Abstract solution with virtualRoles that hide design details.

The three original collaborations are different expansions of this model. Example (c) is
expanded below. We see that each virtualRole here happens to be expanded into two
ClassifierRoles. Further, the line connecting the two virtualRoles is expanded into two
AssociationRoles.

/ NetworkView

/ ActivityView

/ NetworkModel

/ ActivityModel

1 1

1 1

* *

1 1

(c) Direct links between

Activities and their Views.

«virtualRole»
/ Model

«virtualRole»
/ View

Figure 12. Example of expanded model

In conclusion: VirtualRoles permit us to postpone decisions about the detailed object
structure without in any way weakening the collaboration semantics.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 13

7 Abstract interactions

The notion of a message is defined as a formal entity in UML 1.3. Revisiting the example
in the previous example; we see that determining the exact protocols and interactions is an
even more detailed decision than determining the objects. I suggest using the UML
comment meta-object to indicate a composite message interaction. This comment symbol
shall be associated with the AssociationRole or AssociationRoles that are involved in the
interaction. Here is an example:

«virtualRole»
/ View

«virtualRole»
/ Model

- transfer information to view

- alert view of changes in model

Figure 13. Abstract solution with virtualRoles that hide design details.

In the detailed design, these two functions will have to be expanded into two interactions.

8 Typing the AssociationEndRoles

The object Links on the instance level collaboration are mapped onto AssociationRoles on
the specification level. Similarly, the LinkEnds are mapped onto AssociationEndRoles. The
AssociationEndRole is a child of an AssociationEnd. In the Core package, an
AssociationEnd can be typed with a classifier, e.g., an interface.

The practical consequence of this is that we may type the reference that a ClassifierRole has
to a collaborator. This gives much finer grained control than merely typing the
ClassifierRoles themselves.

Here is the cash transfer example with Interfaces added to the specification level
collaboration:

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 14

/ Child

/ Mother/ Father

Mother_Child_Intf

Child_Mother_Intf

cashReceived()

cashRequested()

Figure 14. Typing the AssociationEndRoles

This model is more specific than the class diagram in section 2 because it says that only a
/Child can ask for cash from its /Mother. It also says that any class implementing the
/Mother role must understand cashRequested(). Likewise, any class implementing the
/Child role must understand cashReceived(). The classes of section 2 are satisfactory, but
other solutions are possible.

As another example, consider a visual hierarchy in the Java awt and swing libraries. The
Collaboration on the specification level has two ClassifierRoles: /Container and /Part. The
/Container role may be realized by java.awt.Container or any of its subclasses, while /Part
may be realized by java.awt.Component or any of its subclasses. (Container is subclass of
Component, so this realization permits recursion). Notice the "may be realized by", any
class that fulfills the obligations of the ClassifierRoles can be used to realize them.

(It is not a good idea to include the class names in a general Collaboration model that
defines the mechanism because it unduly restricts the implementation. But it may be useful
to include them in the documentation of a particular program.)

It is often useful and instructive to distinguish between the stimuli flowing down the
hierarchy from the stimuli that are designed to flow up towards the root. A stimulus that
typically flows down the hierarchy is the display command (print(Graphics g)), and an
architectural rule could be to restrict its use to being sent from the container and down. A
stimulus that typically flows up the hierarchy is invalidate(), it marks this component and
all parents above it as needing to be laid out.

The point here is not the particular decisions about who is allowed to send what, but that it
illustrates the such considerations can be useful for determining system architecture and
design.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 15

The Object-Role-Class trichotomy9

An object plays a ClassifierRole in a CollaborationSpecification. If we "open up" the
ClassifierRole, we will find that it can be realized by one or more classes. As an example,
consider the following instances of the family Collaboration above:

Bjarne /Father : Man & Gina /Mother :Woman & Trygve /Child : Man1.

Trygve /Father : Man & Bjorg /Mother :Woman & Johan /Child : Man2.

3. Trygve /Father : Man & Bjorg /Mother :Woman & Borghild /Child : Woman

Here are the corresponding Collaboration diagrams. First the "pure"
CollaborationSpecification:

/Father

/Child

/Mother

Figure 15. A "pure" specification level collaboration

We next add information about Role realization. Note that this does not add essential
information to the Collaboration as such assuming the Collaboration included interface
information.

/Father : Man

/Child :Man , Woman

/Mother :Woman

Figure 16. Include specification of class or alternative classes

So Father is of class Man, Mother of class Woman, and Child of either class.

We finally look at a few instances of this Collaboration. We have, somewhat arbitrarily,
decided to include the role and class names:

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 16

Trygve /Father : Man

Borghild /Child :Woman

Bjorg /Mother :Woman

A third Collaboration at instance level

Trygve /Father : Man

Johan /Child :Man

Bjorg /Mother :Woman

Another Collaboration at instance level

Bjarne /Father : Man

Trygve /Child :Man

Gina /Mother :Woman

A Collaboration at instance level

Figure 17. Instance level collaboration with specification of ClassifierRole and class

The object/role/class trichotomy is easy to explain. We can use a theater metaphor to
explain the difference between role (ClassifierRole) and actor (object) and his capabilities
(class). Or, usually even better, we can use a business organization metaphor: John can play
the role of SystemArchitect in a certain project and belong to the class of Programmers. He
may, of course, also play other roles in this or other projects.

System behavior, messages and interfaces10

We should now have a clear picture of a Collaboration modeling a structure of interacting
objects. But how do they interact?

UML offers two ways of modeling the avalanche of messages that flow from the sending
objects to the receiving objects in a Collaboration: By Interactions or by State Machines.
There is no magic; every message has a sender and a receiver. (Or, more precisely: The
only magic is in the methods that are not first class citizens of a Collaboration model).

An example illustrates the importance of studying collaboration behavior. Consider the
instance level collaboration shown to the right in the figure below. We can clearly associate

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 17

a state diagram with each of the objects. If these diagrams show stimulus sends as well as
stimulus receives, we can match the stimulus sends in one object with the corresponding
stimulus receives in the receiving object. We can then check to see that the collaboration as
a whole is consistent by checking that the receiving objects are in the appropriate state
when receiving the stimuli, and that they will subsequently send expected stimuli to the
other objects. (Notice that when considering the behavior of a collaboration, we ignore any
behavior that is outside this context).

instanceOf

instanceOf

instanceOf

instance level collaborationspecification level collaboration

aFile

aSlave

aMaster

/ File

/ Slave

/ Master

1

1

1

1

1

fileStarted()

runCompleted()

fileStopped()

start()

read()

write()

stop()

run()

1

Figure 18. Specification and instance level collaborations example

A message sequence chart for opening the file, editing it, and finally closing it could be as
follows:

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 18

/Master /File /Slave

start()

fileStarted()

run()

read()

readDone()

write()

writeDone()

runCompleted()

stop()

fileStopped()

Figure 19. Specification level sequence diagram

This diagram is sufficient for this simple behavior; the file is opened, used, and closed. For
more complex behavior, we may need to use state machine diagrams to convince ourselves
that the system works properly in all situations. We first create state machines for each
ClassifierRole:

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 19

Stopping

WaitComplete

WaitStart

/ Master

Initial/File.start();

fileStarted

 /Slave.run();

runCompleted

 /File.stop();

fileStopped

final

Idle

start/

 open file;

 master.fileStarted();

Ready

stop

 /closeFile;

 Master.fileStopped();

/ File

Done

Initial

read

 /read();

 Slave.readDone();

write

 /write();

 Slave.writeDone();

Idle

done

Editing

run/File.read();

writeDone

 /Master.runCompleted();

readDone

 /File.write();

/ Slave

Initial

Figure 20. State machines for each of the three ClassifierRoles.

We now reach the crux of the system behavior. We create an overall state machine
description of the collaboration as a whole by joining the message sends with the
corresponding message receives. We get the following thread of execution:

Version of Version of November 8, 1999 at 10:59. Page 20Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Idle

Idle

start/

 open file;

 master.fileStarted();

done

Editing

Ready

stop

 /closeFile;

 Master.fileStopped();

/ File

run/File.read();

writeDone

 /Master.runCompleted();

readDone

 /File.write();

/ Slave

Done

Initial

Initial

read

 /read();

 Slave.readDone();

write

 /write();

 Slave.writeDone();

Stopping

WaitComplete

WaitStart

/ Master

Initial/File.start();

fileStarted

 /Slave.run();

runCompleted

 /File.stop();

fileStopped

final

8

7

6

5

4

3

2

1

5

55

Figure 21. The thread of execution

More formally, we can derive a state diagram for the collaboration as a whole. Each state is
defined as the combined states of the three roles; we use the notation role1-state1 & role2-
state2 & We show every change in the combined state, and the actions associated with
the transitions. The result is the following diagram:

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 21

File read / Read file; Slave.readDone;

Slave readDone / File.write;

File write / Slave.writeDone();

Master-WaitComplete & File-Ready & Slave-done

Slave writeDone / Master.runCompleted();

Master-Stopping & File-Ready & Slave-done

Master runCompleted / File.stop();

Master-Stopping & File-Done & Slave-done

File stop / close file; Master.fileStopped();

Master-final & File-Done & Slave-done

Master fileStopped8

7

6

5

3

2

1

Master fileStarted / Slave.run();

Master-WaitStart & File-Idle & Slave-Idle

Master-WaitStart & File-Ready & Slave-Idle

Master-WaitComplete & File-Ready & Slave-Idle

Slave run / File.read()

Initial->File.start();

File start / open file; Master.fileStarted;

Master-WaitComplete & File-Ready & Slave-Editing

4

Figure 22. The state machine for the whole system.

This is a trivial example. More complex systems can easily lead to state explosion, making
it impractical to draw the above diagram. We are somewhat helped by the separation of
concern caused by restricting ourselves to the states that are relevant to the purpose and
processes of the a single collaboration. We can get further help by using a special version of
the Harel state charts that were proposed by Egil Andersen in his doctoral thesis on role
modeling [ftp://ftp.nr.no/pub/egil/ConceptualModelingOO.ps.gz]. It can also be argued that
we are skating on very thin ice if we cannot oversee the behavior of our system.

In any case, a tool can generate the system behavior from the individual ClassifierRole
behaviors and use it to check system consistency. So we now have three levels of
consistency checking:

1. The normal typing system can be used by the compiler to check that objects only send
messages that will be understood by the receiver.

Typed AssociationEnds can be reflected in correspondingly typed references. (The Java
language permits typing references with interfaces).

2.

A set of state machines that specify the behavior of individual objects can be
automatically checked for mutual consistency by a suitable tool.

3.

Up to this point we have only considered very simple cases where there was a one-to-one
mapping from role to instance. Now consider that there are any number of slave objects:

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 22

/ File

/ Slave

/ Master

1

1

*

1

1

fileStarted()

runCompleted()

fileStopped()

start()

read()

write()

stop()

run()

aFile

aSlave2

aMaster

instanceOf

instanceOf

instanceOf

instance level collaborationspecification level collaboration

aSlave1

aSlave3

Figure 23. Multiple instances are represented by an archetypical example.

The definition of a collaboration still holds. So one of the slaves is promoted to represent
them all. In the above figure, we have designated aSlave2 to represent the set. The
specification means that the other slaves are to behave consistently; that any slave could
have been chosen to represent them all; but that once selected, it must represent them
throughout the argument. It also means that collaborators waiting for some message from
the slave must wait until it has received the message from all the slaves. The complete
definition of a Collaboration will then be as follows:

Collaboration [My proposal]
A Collaboration describes how a number of objects work together for a common purpose. There
are two aspects. The structural aspect is a description of the responsibilities of each object in the
context of the overall purpose of the collaboration; and also the links that connect the objects into
a communicating whole. The dynamic aspect is a description of how stimuli flow between the
objects to achieve the common purpose.

ClassifierRole [My proposal]
A named slot for an object participating in a specification level Collaboration. Object behavior is
represented by its participation in the overall behavior of the Collaboration. Object identity is
preserved through this constraint: "In an instance of a collaboration, each ClassifierRole maps
onto at most one object."

If there can be more than one instance corresponding to a given ClassifierRole, one of these
instances is selected to represent them all. The other instances are constrained to behave in a
way corresponding to the selected representative.

The net result is that the above message sequence chart and state diagrams are still valid
and need not be changed in any way.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 23

App. 1 Instance level and specification level collaborations

UML 1.3 makes a clear distinction between collaborations at the instance level and at the
specification level:

"A collaboration may be presented at two different levels: specification level or instance
level. A diagram presenting the collaboration at the specification level will show classifier
roles and association roles, while a diagram at the instance level will show instances and
links conforming to the roles in the collaboration." [Section 2.10.4 on page 2-112].

"A collaboration diagram can be given in two different forms: either at specification level
(the diagram shows ClassifierRoles, AssociationRoles, and Messages) or at instance level
(the diagram shows Objects, Links, and Stimuli). The former presents the roles and their
structure as defined in the underlying Collaboration, while the latter focuses on instance
that conforms to the roles in the Collaboration." [Intro to Part 8: Collaboration Diagrams
on p. 3-109]

"A collaboration diagram shows a graph of either Objects linked to each other, or
ClassifierRoles and AssociationRoles; it may also include the communication stated by an
Interaction. A collaboration diagram can be given in two different forms: at instance level
or at specification level; it may either show Instances, Links, and Stimuli, or show
ClassifierRoles, AssociationRoles, and Messages ..." [Section 3.65.2 Notation on page 3-
111]

A slight difficulty is the use of object and instance as synonyms. They are different
according to the Core package. Object is defined as one of the subclasses of Instance, the
others being DataValue, ComponentInstance and NodeInstance. I have not tried to resolve
this question here.

More important is that there is no abstract syntax that supports the instance level
collaboration. Since I believe it to be essential to the proper understanding of
collaborations, I suggest a definition here.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 24

GeneralizableElement

(from Core)

Namespace

(from Core)

SpecificationCollaboration

(from Collaborations)

Classifier

(from Core)

multiplicity: Multiplicity

InstanceCollaboration

(new)

Instance

(from Common Behavior)

1..*

*

base

1 ownedElement

1..*

roleInstance

1..* *

1..*
classifier

*

*

1

ModelElement

(from Core)

ClassifierRole

(from Collaborations)

instance

Figure 24. UML 1.3 extension for the instance level collaboration

Compared to UML 1.3, InstanceCollaboration is added because it is needed to define the
Collaboration semantics and it is used in UML 1.3 semantics and notation.

Well-Formedness rules

"In an instance of a collaboration, each classifier role maps onto at most one instance of
the classifier."

Expressed in OCL:

context InstanceCollaboration inv:
 self.specificationCollaboration.ownedElement->

 forAll(c : ClassifierRole |
 c.instance->select(i : Instance |

 self.roleInstance->includes(i))->size <= 1)

A short glossaryApp. 2

1. action [UML 1.3 glossary]
The specification of an executable statement that forms an abstraction of a
computational procedure. An action typically results in a change in the state of the
system, and can be realized by sending a message to an object or modifying a link or a
value of an attribute.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 25

association [UML 1.3 glossary]
The semantic relationship between two or more classifiers that specifies connections
among their instances.

2.

class [UML 1.3 glossary]
A description of a set of objects that share the same attributes, operations, methods,
relationships, and semantics. A class may use a set of interfaces to specify collections of
operations it provides to its environment. See: interface.

3.

collaboration [UML 1.3 glossary]
The specification of how an operation or classifier, such as a use case, is realized by a
set of classifiers and associations playing specific roles used in a specific way. The
collaboration defines an interaction. See: interaction.

collaboration [my proposal]
describes how a number of objects work together for a common purpose. There are two
aspects. The structural aspect is a description of the responsibilities of each object in the
context of the overall purpose of the collaboration; and also the links that connect the
objects into a communicating whole. The dynamic aspect is a description of how stimuli
flow between the objects to achieve the common purpose.

4.

5. instance [UML 1.3 glossary]
An entity to which a set of operations can be applied and which has a state that stores
the effects of the operations. See: object.

interface [UML 1.3 glossary]
A named set of operations that characterize the behavior of an element.

6.

message [UML 1.3 glossary]
A specification of the conveyance of information from one instance to another, with the
expectation that activity will ensue. A message may specify the raising of a signal or the
call of an operation.

7.

object [UML 1.3 glossary]
An entity with a well-defined boundary and identity that encapsulates state and
behavior. State is represented by attributes and relationships, behavior is represented by
operations, methods, and state machines. An object is an instance of a class. See: class,
instance.

8.

operation [UML 1.3 glossary]
A service that can be requested from an object to effect behavior. An operation has a
signature, which may restrict the actual parameters that are possible.

9.

reference [UML 1.3 glossary]
1. A denotation of a model element.
2. A named slot within a classifier that facilitates navigation to other classifiers.
Synonym: pointer.

10.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 26

role [UML 1.3 glossary]
The named specific behavior of an entity participating in a particular context. A role
may be static (e.g., an association end) or dynamic (e.g., a collaboration role).

ClassifierRole [My proposal]
A named slot for an object participating in a specification level Collaboration. Object
behavior is represented by its participation in the overall behavior of the Collaboration.
Object identity is preserved through this constraint: "In an instance of a collaboration,
each ClassifierRole maps onto at most one object."

If there can be more than one instance corresponding to a given ClassifierRole, one of
these instances is selected to represent them all. The other instances are constrained to
behave in a way corresponding to the selected representative.

11.

12. signal [UML 1.3 glossary]
The specification of an asynchronous stimulus communicated between instances.
Signals may have parameters.

Trygve Reenskaug: UML Collaboration semantics
A green(?) paper

Version of Version of November 8, 1999 at 10:59. Page 27

