
BabySRE,
Squeak Reverse Engineering

Trygve Reenskaug

Abstract
SRE (Squeak Reverse Engineering) are three tools making Squeak objects visible and
tangible.
1) SRE collaboration lets me diagram a Squeak objects with the links between them. With this
tool, I find that I can master larger systems than I could without it
2) SRE Object Browser gives me a complete description of a single object with its identity,
state, and behavior. I can edit its state as in an Inspector and its behavior as in a class
Browser. The class hierarchy is flattened so that I see the object as a whole.
3) Object>>traceRM: is a method that dumps the stack on to the Transcript.
Taken together, these tools put me in closer contact with the real objects of the image, thereby
giving me better understanding of existing systems and better contol over new ones.

Document History
2004-12-19: First release: BabySRE-TRee.11
2005-01-13: Updated for release: BabySRE-TRee.34

1 USING REVERSE ENGINEERING TO EXPLORE EXISTING
OBJECTS

The Squeak inspector is a powerful tool for investigating an object. It is easy to open new
inspectors on its linked collaborator objects and thereby build a picture of the system. The
downside is that the screen (and my brain) quickly get cluttered with inspectors. I might even
have several inspectors on the same object without realizing it.

This last problem is somewhat remedied by adding identity information to Object>>printOn:
so that it prints, e.g., [1622] world : PasteUpMorph. (This notation is somewhat UMLish. It denotes
an object with oop=1622 and name world. It is an instance of the PasteUpMorph class).

But I still have the problem of many inspectors. A new tool, SRE Collaboration, lets me
diagram a system of interlinked objects. I find that it helps me master larger systems than I
could master without it.

Real Squeak objects are very rich and I find it illuminating to distinguish between
different projections of a system of objects. In the documentation on the following pages, I
distinguish between three projections that express a particular separation of concerns:
FRIDAY, JANUARY 14, 2005 10:13 AM 1

2 THE DEMO PROGRAM
1. Domain collaboration. An SRE Collaboration that shows the objects that together realize
my domain.

2. Object descriptor. An SRE Collaboration that shows how the features of an object are
determined by the object’s class and the superclasses of that class.

3. Instantiation. An SRE Collaboration that shows how every object is an instance of a class.
In this projection I plot the object, its class, the class of this class, etc.

Each of these projections shows the truth and nothing but the truth. None of them shows the
whole truth.

The second projection is interesting in that it highlights the nature of a Squeak object. It is
a cliché to say that an object has identity, state and behavior. The SRE Object Browser, shows
an object’s identity, state and behavior in a single window - very illuminating. The top row in
this browser shows the object’s attributes together with the value of the selected one (as in the
Inspector). The second row thows the object’s methods together with the code of the selected
one. The third row shows two multiple select lists; a superclass list and a list of method
categories. Both filter what is shown in the attribute and method lists.

The SRE Collaboration tool helps me understand the static structure of my system of
objects. The SRE Object Browser tool helps me understand the nature of a particular object. A
third tool, traceRM, helps me understand the dynamic interaction. The most important is
Object>>traceRM:levels:. It gives me a dump of the stack in the Transcript. I hope it can be replaced
with more sophisticated tools in the future. (For example by putting an ObjectTracer around
every object in a given collaboration).

In the following, I will describe the reverse engineering of a simple example. You may, as
I do, find it boring reading. But is does illustrate what you can expect if you install the SRE tools
in your own image. I find I frequently use them when I wander into uncharted parts of a system.
It is so much easier to read the code when I understand the relationships between the objects.

The development of the SRE package is part of the BabyUML project where I look for
higher level constructs for object oriented programming (as opposed to class oriented
programming). [ECOOP-04]The vision is that the SRE tools may evolve into being projections
of the program itself where the current class code is just one of several projections.

I believe the SRE tools are quite usable as they are. Their main purpose is to experiment
with what it takes to work with objects. I plan to continue this experimentation, and do not
contemplate to maintain the SRE tools as regular Squeak products.

2 THE DEMO PROGRAM

For the purposes of this study, I created a small class that defines a colored ellipse on the
screen. This ellipse cycles through a sequence of different colors. The class definition is as
follows:

EllipseMorph subclass: #DemoEllipseSRE
instanceVariableNames: 'colorIndex'
.....

There are two methods:
FRIDAY, JANUARY 14, 2005 10:13 AM 2

3 DOMAIN COLLABORATION SHOWING DOMAIN OBJECTS AND LINKS
step
self color: self nextColor.

nextColor
| colors |
colors := {Color red. Color green. Color blue. Color magenta. Color yellow.}.
colorIndex ifNil: [colorIndex := 1].
colorIndex := colorIndex + 1 \\ colors size + 1.
^colors at: colorIndex.

The object under study is opened with the statement
DemoEllipseSRE new openInWorld.

and I observe a small ellipse that regularly changes its color.

3 DOMAIN COLLABORATION
SHOWING DOMAIN OBJECTS AND LINKS

Appendix 2: on page 10 describes how I created the domain collaboration shown overleaf. The
focus of attention is the ellipse object I created when I executed

DemoEllipseSRE new openInWorld.

This is an example of the simplest kind of morph. It is owned by [1622] world, a morph that
controls the whole Squeak screen and has all the visible elements as submorphs. (world is an
instance of PasteUpMorph. Its Balloon help says that it is a morph whose submorphs comprise a
paste-up of rectangular subparts which "show through").

I see that world has a link named extension holding a SimpleBorder. The extension appears to be
private to world, I think of it as being encapsulated by the world object.

The world also has a link named worldState that holds an activeHand for input, a damageRecorder
for selective display, a stepList for stepping animated morphs, and a canvas that is a representation
of the display screen.

The world also has a project method (called a derived attribute in UML). This project has a
link back to its world.

The WorldState’s activeHand is a morph that represents the cursor within the world. The hand
is a submorph of world. (The hand's submorphs hold anything being carried by dragging. The owner of the dragged morph
is temporarily set to the hand and returned to the original owner when the dragging is completed. This is very dynamic and hard
to diagram at the instance level. It could be described in a role model, the same kind of diagram where the objects are represented
by the role they play in the context).
FRIDAY, JANUARY 14, 2005 10:13 AM 3

3 DOMAIN COLLABORATION SHOWING DOMAIN OBJECTS AND LINKS
This gave me the inspiration to seek out some other objects shown in the diagram: :
FRIDAY, JANUARY 14, 2005 10:13 AM 4

3 DOMAIN COLLABORATION SHOWING DOMAIN OBJECTS AND LINKS
After having drawn most of the diagram, I wanted to find out how and from where the step
method was called. I augmented the step method with a stack trace:

DemoEllipseSRE>>step
self doOnlyOnce: [self traceRM: self levels: 50].
self color: self nextColor.

The result was the following trace of the stack in the Transcript:
1 [2131] : DemoEllipseSRE >> step {[2131]a DemoEllipseSRE(2131)}
2 [2131] : DemoEllipseSRE >> doOnlyOnce:
3 [2131] : DemoEllipseSRE >> step
4 [2131] : DemoEllipseSRE >> stepAt:
5 [518] : StepMessage >> value:
6 [3523] : WorldState >> runLocalStepMethodsIn:
7 [3523] : WorldState >> runStepMethodsIn:
8 [1622] : PasteUpMorph >> runStepMethods
9 [3523] : WorldState >> doOneCycleNowFor:
10 [3523] : WorldState >> doOneCycleFor:
11 [1622] : PasteUpMorph >> doOneCycle
12 [2445] : Project class >> spawnNewProcess
13 [3684] : BlockContext >> newProcess

I find that find that the step method is called from [518] StepMessage. This object is not in the
diagram, so I right-click the diagram background and select add role from expression... . I then type

StepMessage allInstances detect: [:obj | obj asOop = 518]
Wonders! I now get this object in the diagram. I put the receiver link from this object to
[2131]:DemoEllipse. The above stack trace shows that the StepMessage was called from
[3523]:WorldState. I try the add link from variable... command and find that the link is in the stepList
collection attribute. Further reading of code divulges that the stepList is a collection holding a
StepMessage for every morph that is stepping. This causes the step methods to be called at regular
intervals, causing my [2131] : DemoEllipseSRE to cycle to the its next color.

My next quest was to find out how the ellipse is being redrawn. All I have done myself is
to set self color: self nextColor in the step method. I added a trace statement to the draw method:

DemoEllipseSRE>>drawOn: aCanvas
self doOnlyOnce: [self traceRM: self levels: 50].
super drawOn: aCanvas.

The Transcript dump of the stack was as follows:
1 [2131] : DemoEllipseSRE >> drawOn: {[2131]a DemoEllipseSRE(2131)}
2 [2131] : DemoEllipseSRE >> doOnlyOnce:
3 [2131] : DemoEllipseSRE >> drawOn:
4 [2261] : FormCanvas >> draw:
5 [2261] : FormCanvas >> drawMorph:
6 [2131] : DemoEllipseSRE >> fullDrawOn:
7 [2261] : FormCanvas >> roundCornersOf:in:during:
8 [2261] : FormCanvas >> roundCornersOf:during:
9 [2131] : DemoEllipseSRE >> fullDrawOn:
10 [2261] : FormCanvas >> fullDraw:
11 [2261] : FormCanvas >> fullDrawMorph:
FRIDAY, JANUARY 14, 2005 10:13 AM 5

3 DOMAIN COLLABORATION SHOWING DOMAIN OBJECTS AND LINKS
12 [3523] : WorldState >> drawWorld:submorphs:invalidAreasOn:
13 [3332] : Rectangle >> allAreasOutsideList:startingAt:do:
14 [3332] : Rectangle >> allAreasOutsideList:do:
15 [3523] : WorldState >> drawWorld:submorphs:invalidAreasOn:
16 [1125] : Array >> do:
17 [3523] : WorldState >> drawWorld:submorphs:invalidAreasOn:
18 [3523] : WorldState >> displayWorld:submorphs:
19 [1113] : FormCanvas >> roundCornersOf:in:during:
20 [1113] : FormCanvas >> roundCornersOf:during:
21 [3523] : WorldState >> displayWorld:submorphs:
22 [1622] : PasteUpMorph >> privateOuterDisplayWorld
23 [1622] : PasteUpMorph >> displayWorld
24 [3523] : WorldState >> displayWorldSafely:
25 [392] : BlockContext >> on:do:
26 [392] : BlockContext >> ifError:
27 [3523] : WorldState >> displayWorldSafely:
28 [3523] : WorldState >> doOneCycleNowFor:
29 [3523] : WorldState >> doOneCycleFor:
30 [1622] : PasteUpMorph >> doOneCycle
31 [2445] : Project class >> spawnNewProcess
32 [3684] : BlockContext >> newProcess

I still haven’t discovered how the change of color causes the display of the area covered by the
ellipse. It is probably something involving [3523]:worldState>>damageRecorder, but I ended my quest
at this point.
FRIDAY, JANUARY 14, 2005 10:13 AM 6

4 OBJECT DESCRIPTOR COLLABORATION AND BROWSER
4 OBJECT DESCRIPTOR
COLLABORATION AND BROWSER

The properties of an object are given by its class
and the superclasses of that class. The relevant
objects are shown in the diagram on the left.

[2131] : DemoEllipseSRE is an instance of
[3819] DemoEllipseSRE is a subclass of
[633] EllipseMorph etc.

It is interesting to note that the objects shown in
this diagram taken as a whole exactly describe this
particular object. It is also interesting to note that
the defining classes in all probability belong to
several packages.

It is tempting to create an editor that at a glance
will give a complete descriptor of an object. An
early attempt is is the SRE object browser shown
below.

Note: Sometimes, it is useful to extend the name of the object
with the name of the class. At other times, this can be very
confusing as illustrated in this diagram. May be the default
should be that the class name should only be shown for
anonymous objects without a name on their own.
FRIDAY, JANUARY 14, 2005 10:13 AM 7

4 OBJECT DESCRIPTOR COLLABORATION AND BROWSER
The top row shows the object’s instance variables; the value of the selected variable is
shown and can be edited on the right. The middle row shows the object’s behavior. Selectors on
the left; the code of the selected method to the right. The bottom row contains two multiple
selection list filters (PluggableListMorphOfMany), superclasses on the left, method categories on the
right..

This browser gives a complete picture of the object. In the snapshot shown below, all
superclasses and one category have been selected. Notice the three drawOn: methods in the
superclass chain.
FRIDAY, JANUARY 14, 2005 10:13 AM 8

5 INSTANTIATION COLLABORATION
5 INSTANTIATION COLLABORATION

Every object is an instance of a class. A class object is
likewise the instance of a class. (Classes whose instances
are classes are often called metaclasses). The metaclass is
also an instance of a class -- does it ever stop? The
Smalltalk architecture is given in some complex
diagrams in the [Blue book] (on pages 270-272 in my
copy). Subclassing and instantiation are independent
mechanisms and can best be studied in separate
projections. The chain of instantiation for the [2131] :
DemoEllipseSRE object is shown on the left.

Quite simple, but one can easily get lost by confusing
instantiation with inheritance. It can be instructive to
create a collaboration showing instantiation and
inheritance in the same diagram. It gets wonderfully
complicated without adding any interesting insights.

In particular, the metaclass [41] DemoEllipseSRE class, is
not part of the ellipse object’s descriptor. The
squeak-dev mailing list sometimes shows questions
arising from a confusion of a class with its metaclass.
I am speculating that the metaclass object could be
described as a regular object in the system design
(sometimes called a factory object). May be we don’t

need one for every class; several classes could share a common factory object.

6 CONCLUSION

The diagrams and stack dumps shown here are all created with the help of the BabySRE tools.
They augment the traditional browsers and inspectors when we need to understand and possibly
document an existing system The object browser can also be used to modify the system; its user
can change the values of instance variables, add new instance variables, define and redefine
methods in the object’s immediate class. (Modifications of the superclasses has been blocked
because this seems too dangerous to be contemplated in the context of a single object).

It is tempting to go a step further and to explore if system projections that resemble the
BabySRE diagrams could become part of the program itself. In particular, anything that has to
do with object interaction could be moved out of the class browser and into some kind of
collaboration browser. The system description would then put constraints on what could be
specified in the regular class methods.

My focus on objects opens a vista of structuring objects by enclosing them in components,
that is objects with encapsulated objects that are invisible from the outside of the component.
FRIDAY, JANUARY 14, 2005 10:13 AM 9

7 ACKNOWLEDGEMENTS
In the meantime, I have on many occations found that the BabySRE tools help me better
understand programs written by myself and by others.

7 ACKNOWLEDGEMENTS

Many thanks to Ned Konz for the Connectors package. Also for his permission to copy/rename
the classes I use from this package so that the evoplution of BabySRE becomes independent of
the evolution of Conntectors the package.

Sincere thanks to Milan Zimmermann and Chris Muller for excellent and very useful
suggestions that have been realized in he second version of BabySRE.

Appendix 1: Installation

1. The image I started from was Squeak3.7-5989-basic.
2. I gave World Menu command open>>SqueakMap Package Loader.
3. I used this loader to load the latest version of BabySRE.

- 'The package has no published release for your Squeak version, try releases for any Squeak version?'
answer yes.

- 'The package has no published release at all, take the latest of the unpublished releases?' answer
yes.

4. To reproduce the example described above, I executed
DemoEllipseSRE new openInWorld.

and observed that the ellipse with cycling colors appeared in the top left corner.
NOTE: An earlier version required that Connectors were installed before BabySRE. This is no longer
necessary because a copy of the required parts of Connectors is now included in the BabySRE
package.

Appendix 2: How I created the domain collaboration

1. I pointed to the ellipse and pressed the left button with the ALT-button (Windows) down
to open the halo. I opened the debug menu in the white button on the right hand edge. I
selected SRE collaboration to open a collaboration diagram on the morph.

2. I placed the object [[2131]] a DemoEllipseSRE in the diagram.
3. I right-clicked on the diagram background (the ‘playfield’) and selected the menu item

Rename diagram... . I typed Domain Collaboration.
4. I right-clicked on the role symbol marked [2131] : DemoEllipseSRE and selected the menu

item add link for variable.... This gave a new menu. I selected the owner item. I placed the
resulting [1622] world.

5. Right-clicking [1622] world, I added the link named submorphs[2131].
6. Again right-clicking [1622] world, I placed extension, then otherProperties, #borderStyle, and

#worldState.
7. Right-clicking [3523] : WorldState, I placed #canvas and a#ctiveHand.
FRIDAY, JANUARY 14, 2005 10:13 AM 10

7 ACKNOWLEDGEMENTS
8. Right-clicking [1622] world, I selected add role from expression., typed 'self project'
and placed [2604] a Project. I then linked this project back to [1622] world.

9. I right-clicked [3523] : World State, selected add role from expression, typed
stepList detect: [:sm | sm receiver asOop = 2131]

I then placed [518] : StepMessage. (I had to look around a bit to discover this statement. An alternative
way for finding this object is given in the body of this note.)

10. I right-clicked [518] : StepMessage, selected add link for variable and chose receiver. This created
the link from stepMessage to [2131] : DemoEllipseSRE.

Appendix 3: How I created the object descriptor collaboration

1. I pointed to the ellipse and pressed the left button with the ALT-button (Windows) down
to open the halo. I opened the debug menu in the white button on the right hand edge. I
selected SRE collaboration and was given the choice of using one of the existing diagrams or
a new one. I selected new.
I placed the object [2131] : DemoEllipseSRE in the diagram.

2. I right-clicked on the diagram background (the ‘playfield’) and selected the menu item
Rename diagram... . I typed Demo descriptor.

3. I right-clicked [2131] : DemoEllipseSRE and selected the menu item add link for variable' -> class.
I placed [3819] DemoEllipseSRE : DemoEllipseSRE class

4. I right-clicked [3819], selected add link for variable -> superclass. Placed [633] EllipseMorph.
5. Continued up the superclass chain to [22359] ProtoObject and [3840] : UndefinedObject.

Appendix 4: How I created the instantiation collaboration

1. I pointed to the ellipse and pressed the left button with the ALT-button (Windows) down
to open the halo. I opened the debug menu in the white button on the right hand edge. I
selected SRE collaboration and was given the choice of using one of the existing diagrams or
a new one. I selected new.
I placed the object [2131] : DemoEllipseSRE in the diagram.

2. I right-clicked on the diagram background (the ‘playfield’) and selected the menu item
Rename diagram... . I typed Demo instantiation.

3. I right-clicked [2131] : DemoEllipseSRE and selected the menu item add link for variable'-> class. I
placed [3819] DemoEllipseSRE : DemoEllispeSRE class in the diagram.

4. I right-clicked [3819], selected add link for variable -> class and placed
[41] DemoEllipseSRE class : Metaclass.

5. I continued up to the root classes, [108] Metaclass and [1186] Metaclass class.
FRIDAY, JANUARY 14, 2005 10:13 AM 11

7 ACKNOWLEDGEMENTS
References

About the author

 Trygve Reenskaug , prof.em.,
Department of informatics,
University of Oslo, Norway.

mailto: trygver <at> ifi.uio.no
http://heim.ifi.uio.no/~trygver

[ECOOP-04] Trygve Reenskaug: Empowering People with BabyUML: A sixth Generation
Programming Language. Opening talk, ECOOP 2004, Oslo.
http://heim.ifi.uio.no/~trygver/2004/ECOOP-04/EcoopHandout.pdf

[Blue book] Goldberg and Robson: Smalltalk-80. The language and implementation. Addison-
Wesley 1983. ISBN 0-201-11371-6

[Kay77] Kay, Alan, Microelectronics and the Personal Computer, Scientific American,
September 1977, p. 244.

[Pawson04] Richard Pawson: Naked Objects. PhD thesis, Trinity College, Dublin, 2004.

[Norman88] Donald A. Norman: The Design of Everyday Things. Doubleday, 1988
FRIDAY, JANUARY 14, 2005 10:13 AM 12

http://heim.ifi.uio.no/~trygver/2004/ECOOP-04/EcoopHandout.pdf

	1 Using reverse engineering to explore existing objects
	2 The demo program
	3 Domain Collaboration showing domain objects and links
	4 object descriptor Collaboration and Browser
	5 instantiation Collaboration
	6 Conclusion
	7 Acknowledgements
	Appendix 1: Installation
	Appendix 2: How I created the domain collaboration
	Appendix 3: How I created the object descriptor collaboration
	Appendix 4: How I created the instantiation collaboration
	References
	About the author

