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Abstract
1973 marked the end of an era and the beginning of a new in my career as a computer programmer. The 
first era culminated with me writing the last program of a series that gave me a comfortable feeling. The 
new era came about because we moved from stable, closed systems to continuously changing, open 
systems. New problems, new challenges. I have still not mastered them; I still cannot build a significant 
program that is “so simple that there are obviously no deficiencies”.
There is a widespread belief that current software complexity is an unavoidable consequence of the 
complexity of the requirements and that we have to tolerate deficient software. I claim that this is merely 
a myth, and that our problems can be solved with adequate programming concepts, languages and tools 
that leverage the communication aspects of our systems. 
It is hard to do sums with roman numerals. It is equally hard to build communicating systems with current 
tools. BabyUML is a laboratory for experimenting with new programming disciplines and languages. The 
focus is on communicating objects rather than static classes. The laboratory is used to explore the 
specification of hierarchical structures of collaborating components and to explore how to make the 
component essence explicit and visible, hiding the details within the component members. The goal is to 
disprove the complexity myth and to help me feel comfortable with my future programs.

i: Abstract : 

Current information systems have very broad requirements including the need for openness and 
distribution coupled with privacy and security. Continuous system evolution is needed to adapt them to a 
changing environment. The BabyUML laboratory is an environment for experimenting with new ways of 
building comprehensible and secure systems with transparent and readable code. BabyUML is a stored 
program object computer. It is implemented in Squeak, a dialect of Smalltalk. All program elements 
including classes, metaclasses and compilers exist as tangible objects, merging program build time into 
run time. The Smalltalk insistence on pure object orientation invites us to change our focus from the 
classes to the objects. We supersede the Smalltalk notion of programs with new high-level programming 
constructs gleaned from UML and transpose them to fit in the object space. The result is a set of high-
level constructs that will help create clear solutions to complex problems.

BabyUML may be seen as a contribution to a possible UML 3.0; a unified, high level, and extensible 
family of programming languages for distributed, stored program object computers.

In the tutorial, we will discuss the fundamental concepts of BabyUML and illustrate them with the 
implementation of a concrete example.
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1973 marked the end of an era and the beginning of a new in my career as a computer programmer. The 
first era culminated with me writing the last program of a series that gave me a comfortable feeling. The 
new era came about because we moved from stable, closed systems to continuously changing, open sys-
tems. New problems, new challenges. I have still not mastered them; I still cannot build a significant pro-
gram that is “so simple that there are obviously no deficiencies”. 1
There is a widespread belief that current software complexity is an unavoidable consequence of the com-
plexity of the requirements and that we have to tolerate deficient software. I claim that this is merely a 
myth, and that our problems can be solved with adequate programming concepts, languages and tools that 
leverage the communication aspects of our systems. 1
It is hard to do sums with roman numerals. It is equally hard to build communicating systems with current 
tools. BabyUML is a laboratory for experimenting with new programming disciplines and languages. The 
focus is on communicating objects rather than static classes. The laboratory is used to explore the specifi-
cation of hierarchical structures of collaborating components and to explore how to make the component 
essence explicit and visible, hiding the details within the component members. The goal is to disprove the 
complexity myth and to help me feel comfortable with my future programs. 1
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Part  A:  Introduct ion

A.1:  Preface

Nusse was the first Norwegian modern computer, it started its operation in 1953. It was a binary computer; 
all programs and data had a uniformly binary representation. Its memory sported a grand total of 16,384 
bits organized in 512 words of 32 bits each. It was a stored program computer; a program could operate 
on any word in memory, including the program itself.

I joined the Nusse team in 1957. I learnt to program sitting in front of the CPU console watching the 
registers, changing their bits one by one and stepping through the program instructions. I was in intimate 
contact with the CPU and had to bridge the gap to the problem domain in my head. There were no aids 
to program structuring. Program and data words were more or less haphazardly sprawled all over 
memory. I soon learned that 512 words was more than my brain could master. A typical symptom was that 
an innocuous change in one corner of a program caused a catastrophic failure in the opposite corner.

Our software engineering savvy improved over the years and culminated in 1973 . This was the last 
time I experienced a program that made me feel comfortable. The problem solved was nontrivial. We 
worked in a waterfall fashion on its specification, design and database schema until everything was clear, 
simple and well understood. We then coded one subroutine at the time, using peer review to ensure its 
correctness before we tested it. The unit tests revealed one error per four hundred lines of code, system 
tests and subsequent use revealed none. The completion of this 1973 program gave us great satisfaction 
and we would have been very surprised if it hadn’t fulfilled our expectations throughout its lifetime.

i: The New Nature of Programming

The 1973 program marked the end of an era because the nature of our work with computers underwent 
a fundamental change at that time:
• Evolution. The static user requirements of the sixties were replaced by tight loops where new 

programs caused new user work procedures that in its turn lead to new requirements. It was no 
longer practicable to maintain specification and design documents synchronized with the rapidly 
evolving programs.

• Open systems. The systems of the sixties were closed, monolithic, database centered systems. We 
now saw open systems of distributed components with no clear boundaries between them. In the 
sixties, an engineer who wanted to retrieve some data from the design system and feed them into 
the materials management system needed two computer terminals on his desk. It was a great 
advance when he could open two windows on his screen and copy-paste the data. What he really 
wanted was a tool that facilitated the data transfer; automatically but under user control. Standalone 
programs were gradually replaced by subsystems that were grafted into an existing system. 
Communication had become the glue that joined various subsystems together.

• Multi process. Modern systems run on networks of distributed computers and are inherently multi-
process.

• Ownership. Users were becoming more computer literate and demanded better control over their 
computer-based information and services. This put new demands on system transparency.

The answer to the new challenges was object orientation. Systems became systems of collaborating 
objects that have unique identity, and that encapsulates state and behavior. We first tried programming in 
Simula, but were stumped by its lack of persistent objects and by its typing system that forced us to break 
the encapsulation and think in terms of object implementations (classes). We made a preprocessor to 
Fortran making it somewhat object oriented. We finally ended with Smalltalk as the solution that best fitted 
our needs.

Smalltalk defines a virtual computer built on top of various combinations of hardware and operating 
systems. It is a virtual object computer; all programs and data have a uniform object representation. Its 
memory contains a large number of objects with identity encapsulating state and behavior. It is a stored 
program computer; programs exist as regular objects at run time and can operate on any object, including 
itself.
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I learned Smalltalk as a visiting scientist at Xerox PARC in 1977/78 by sitting in front of the computer 
screen watching the objects in a debugger, changing their attributes and behavior on the fly and stepping 
through the program instructions. I was in intimate contact with the objects and had to bridge the gap to 
the problem domain in my head. Classes and subclasses were used to structure the program code, but 
my objects were more or less haphazardly sprawled all over the object space. I soon learned that a 
system consisting of some 300,000 weakly structured objects was more than my brain could master. A 
typical symptom was that an innocuous change in one corner of a system caused a catastrophic failure 
in the opposite corner.

ii: The Need for a New Generation

Even today, my programs are more like the stuff I produced in 1957 than the beautiful edifice of 1973. 
Thirty years of patching my 1973 software engineering discipline has not solved the problem; my brain 
cannot fathom my programs. 

Many marketeers want us to believe that the complexity and poor quality of current software is an 
unavoidable consequence of the complex requirements. I claim that this is a myth, and that our problems 
are caused by the lack of adequate programming concepts, languages and tools. I have embarked upon 
a project, BabyUML, that shall demonstrate that it is indeed possible to write simple, transparent programs 
that satisfy our requirements. I hope BabyUML will enable me to write significant programs that make me 
feel as comfortable as I felt in 1973. 

BabyUML shall produce a high level, communication centered programming discipline for a stored 
program object computer. It is more than a language because BabyUML shall support many languages 
used for describing different aspects of the systems. I have somewhat whimsically chosen the name; 
Baby because the world’s first, very small stored program computer was the English Baby. UML because 
I glean many powerful constructs from UMLe. 

The BabyUML success criteria are as follows:
1. Master complexity. Software should be transparent so that it can be mastered by the human brain.
2. Global. The programming discipline should scale, possibly by being recursive. It should be 

applicable at all levels from global architecture to local detail. 
3. Safe and secure. Safety and security issues are getting increasingly important. Protection support 

must be an essential concern throughout the programming discipline.
4. Controlled program evolution. Requirements, design and code will evolve throughout the program 

lifetime. The discipline shall help maintain consistency between all three throughout the system life 
cycle.

5. Support software reuse and interchange. The discipline shall support the definition of software units 
that can be adapted for reuse in a variety of different contexts.

C.A.R. Hoare has given a very potent expression of our choices: “There are two ways of constructing a 
software design: One way is to make it so simple that there are obviously no deficiencies and the other is to make it 
so complicated that there are no obvious deficiencies.” The first relies on program transparency and readability 
to achieve quality programs. The second has to rely on testing. To quote Edsger Dijkstra: “Program testing 
can be used to show the presence of bugs, but never to show their absence!”. The best way to avoid bugs 
is clearly not to put them in, in the first place. The goal of the BabyUML project is to find a discipline of 
programming that supports getting it right the first time. The goal of the BabyUML laboratory is to let me 
experiment with new methods, tools and languages that help me achieve this goal.

iii: Acknowledgements

The idea and implementation of a stored program object computer is due to Alan Kay, Dan Ingalls, Adele 
Goldberg and the Smalltalk team at Xerox PARC [Blue book]. UML is the combined result of a great 
number of people. Taken together, they have documented many concepts that are useful for modeling 
large systems of interacting objects.

Special thanks to Dan Ingalls for his help with the BabyUML MetaMetaclass and other Squeak 
constructs. Also my sincere thanks to Ragnar Normann who has helped me with database issues and 
who has helped me force my brain to thinking in declarative terms without immediately translating to my 
usual imperative code.
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iv: Outline

The rest of the paper is organized as follows:
• SectionA.2:Three Generations of System Architectures (page 8) contemplates cpu-, storage-, and 

communication-centered architectures. It finds that current programming languages are inadequate 
for communication-centered programming and suggests that we fill the gap with a new discipline of 
programming.

• SectionA.3: Introduction to BabyUML (page 10) describes the BabyUML laboratory. It is based on 
Squeak, a dialect of Smalltalk. Its objects are embedded within a standard release of Squeak so that 
regular Squeak is available for the instrumentation of the BabyUML laboratory. It also reports the 
BabyUML meta- and metametaclasses.

The notion of an object is commonly defined as being an instance of a class. In BabyUML, an object is an 
independent concept being defined as an entity that has unique identity and that encapsulates state and 
behavior. All objects have the same characteristics when seen from the outside; they communicate by 
sending messages to each other. The first version of BabyUML recognizes three different realizations as 
described in the following three sections. The realizations are freely interchangeable in their environment, 
but their internals have different architectures and are supported by different tools and languages.
• SectionB.1:The Simple Object (page 14) takes us back to first principles. We deal with the object as 

a concept in itself; independent of its class and other details of code. This lets us focus on the object 
as a partner in communication, hiding its implementation details for separate study.

• SectionB.2:The Simple Component (page 17) discusses how we partition the object space into 
components, where a component is an object that encapsulates other objects. It can only be 
accessed through its ports that are characterized by their provided and required interfaces. This 
gives an hierarchical system composition, supporting a strategy of “divide and conquer”.

• SectionC.2:Component Merge (page 30) discusses an extension of the concept of subclassing to 
the specialization of components. This idea from UML is a powerful tool for the reuse of component 
designs.

• SectionB.3:The Mastered Component (page 19) has a “micro main program” called a maestro that 
makes the member interaction explicit, visible and manageable.

• SectionB.4:The Declarative Component (page 22) makes the member structure explicit, visible and 
manageable. It is done by describing the structure declaratively, using queries to create the external 
views needed for different purposes.

BabyUML is still at an early stage, but I feel that some conclusions my be drawn even if a great deal of 
work remains to make it usable in practical programming. 
• SectionE.1:Conclusion (page 38) summarizes the work done so far and draws a conclusion. 
• SectionE.2:Further work (page 39) describes some interesting and important work that waits to be 

done.
“The proof of the pudding is in the eating”. The BabyUML laboratory is used to test out the ideas in 
practical programming:
• Appendix 2:Component Merge  (page46) is a quote from the UML 2.0 specification document. It 

defines the somewhat elusive notion of UML merge. I hope that the BabyUML version of the concept 
can be substantially clarified through simplification, good examples and powerful tools.
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A.2:  Three Generations of System Architectures

It is illuminating to compare the evolution of computer hardware architecture to the corresponding 
evolution of software architecture and design principles.

Figure 1: Three system architectures

Figure 1 illustrates three generations of hardware and software architectures reflecting three different 
ways of thinking about data processing and programming; CPU-Centered, Storage-Centered, and 
Communication_Centered as discussed below.

i: CPU-Centered Architecture

Nusse was a binary computer; all programs and data had a uniformly binary representation. Its various 
units were arranged around a CPU that controlled all its operations as illustrated on the left of figure 1. 

Hardware and software evolved very quickly from a primitive beginning. I wrote my first programs in 
binary. The next step was an assembler that enabled me to write the instructions in symbolic form. The 
transition to an algorithmic language was a somewhat traumatic step. The upside was that my programs 
were closer to the problem domain because the detailed CPU instructions were generated automatically. 
The downside was that I could no longer write programs that operated upon themselves. In a sense, I had 
lost contact with the stored program computer.

ii: Storage-Centered Architecture

For a short period in the sixties, computers were built with a “multi-port memory” in the center and various 
units arranged around it as illustrated in the middle of figure 1. 

In 1960 , we launched our first major software development project. The product was Autokon, a 
CAD/CAM system that maintained its leadership in the world’s shipbuilding industry for more than 25 
years. We also moved to a more powerful computer, the Swedish Facit EDB3 that for a short time was 
the world’s fastest. We were very fortunate with this computer because it had a “carousel” tape station 
consisting of a removable wheel with 64 tape spools. This made it feasible to store all information about 
a ship in a random access database that fitted on one carousel wheel. Various design programs were 
arranged around the database, accessing the data in different ways depending on the needs of the 
programs. This database-centered software architecture corresponds to the memory-centered hardware 
architecture, demoting the CPU-centered applications to be subordinated the central data store. 
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Applications are severely restricted in that the structuring, storage and retrieval of persistent data is the 
exclusive prerogative of the database system with its schemas and access mechanisms.

iii: Communication-Centered Architectures

Hardware moved very quickly to communication-centered architectures with a common “bus” where 
units of all kinds could be plugged in as illustrated to the right of figure 1. The architecture was soon 
extended to interconnect the computers themselves. The Arpanet evolved into the internet and was 
augmented with local intranets. 

The last stage in the evolution of software architectures has gradually followed the lead from 
hardware. Client-server architectures such as Enterprise Java Beans (EJB) are early examples. [Web 
Services] is another example. Object oriented programming has entered the main stream. 

Simula, Java, C++ and C# are touted as object oriented programming languages, but they are really 
class oriented. Java is to object orientation what Cobol is to databases because Java does not support 
the specification of systems of interacting objects, only their parts. We clearly need a counterpart to the 
discipline enforced by databases; a discipline of programming that gives us high-level control of 
component interconnection and interaction.

I believe a new, communication-centered discipline must subsume the CPU- and storage-centered 
approaches, creating a new layer of system organization on top of the other two: 
• Communication-centered: UML collaborations and interactions can be used to specify object 

communication.
• Storage-centered: UML class diagrams can be used to declare object structures
• CPU-centered: Smalltalk or Java methods can be used to specify the detailed behavior of objects.
We will unify all three architectures in the following sections.
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A.3:  Introduction to BabyUML

Object oriented architectures are a special case of communication-oriented architectures as illustrated in 
figure 2. Each object is like a virtual computer with its identity and encapsulated state and behavior. 
Conceptually, the objects interact with each other. In reality, the interaction is realized by a bus such as 
the Java or Smalltalk virtual machine (VM) or the internet.

Figure 2: Communication-centered software architecture

Alan Kay once said that “an operating system is what the language designers forgot to put into the 
language”. We could similarly claim that UML is what the language designers forgot to put into the 
language. UML is a language for specifying system models and is not directly executable. BabyUML is a 
discipline of programming encompassing several languages for specifying object communication, storage 
and computation. The UML metamodel is not directly applicable in BabyUML, but many of its constructs 
can be simplified and adapted to our new discipline of programming.

Talking and writing about a new programming discipline doesn’t mean much without at least one 
concrete example that illustrates its feasibility and the usefulness of its proposed features. BabyUML is a 
laboratory for experimenting with communication-centered architectures. Most of it is still plans and other 
vaporware, but the skeleton of its metamodel has been implemented in the Squeak, a dialect of Smalltalk.

i: The BabyUML Stored Program Object Computer

Nusse, our computer anno 1953, was a computer were the smallest adressable unit was a word of 32 
bits. Correspondingly, BabyUML is a computer where the smallest adressable unit is an object that has a 
unique identity and that encapsulates state and behavior.

Smalltalk [Blue book] is a virtual, stored program, object computer as illustrated in figure 3. Object, 
because its smallest unit of data is the object. (The bits of the underlying computer are hidden by the VM). 
All data are represented as objects; even booleans, numbers and characters. Virtual, because it is 
realized in software by the Smalltalk Virtual Machine (VM). Stored program because programs can be 
seen and manipulated as regular objects. A program can operate upon any object in the VM, including 
the program itself. 
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Figure 3: Smalltalk is a virtual, stored program, object computer

The objects are stored in the Smalltalk object space, the image. The VM creates a new object when told 
to do so by a method; returning the objectID (oop) of the new object so it can later be the receiver of 
messages. 

Objects that cannot be reached directly or indirectly from a special root object are removed by the 
garbage collector so that their physical memory space can be reused. The Smalltalk VM also reuses the 
oop, but this conflicts with our basic idea of an object where the objectID is unique in space and time. We 
think of the Smalltalk oop as a local alias for a global, immutable object ID. The ongoing work with [DOI] 
could be a good starting point for a suitable standard.

The VM executes byte codes that it finds in a CompiledMethod object. A byte code can, for example, 
tell it to transfer a message from the current object to a receiver object. It looks up the methodDict in the 
receiver to find the method corresponding to the message selector. It then puts the message arguments 
on its stack and executes the byte codes of the new method.

The VM expects to find the format, methodDict, and superClass attributes at specific positions in the class 
object. The attributes are marked with orange color in figure 21 on page 28. The the remainder of the 
class features can be different in different class implementations.

There is a byte code for saving the image to file. It causes all objects, including the stack and the 
program counter, to be saved to file. This file can later be restored as an image and the execution 
continued at the next byte code location. 

There is no way to start the execution of a new program from scratch; every execution is the 
continuation of some other execution. New programs are created as modifications to an ongoing 
execution and can be saved in a new image file. (Alternatively, one can save the program source code 
for later compilation into an image. This capability is not part of the object computer as such, but is part 
of a particular programming development environment). 

ii: The BabyUML Laboratory is Embedded in Squeak

Smalltalk is an ideal proving ground for a new discipline of programming. The Smalltalk notions of class, 
method, programing language and programming tools are all realized by objects in the image. A new 
class is created by instantiating a metaclass; another object. The code for a method is translated from its 
text form to byte codes by a compiler method that is part of the class object. This means that BabyUML 
can make its own variants of the default Smalltalk program objects giving them their own notions of 
programs, programming language and tools. 

The choice of Smalltalk for implementing BabyUML was, therefore, simple. The choice of its Squeak 
dialect was harder. It is fairly easy to learn the semantics and syntax of the Smalltalk programming 
language, but it can be frustrating to become familiar with its pragmatics and class libraries. Squeak is 
even more frustrating because it is a rapidly evolving environment with a large number of undocumented 
features in different states of completion. But the advantages far outweigh the objections:
• Squeak is open source; there are no obstacles to the distribution of the BabyUML laboratory to 

anybody who might want to experiment with it.
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• The Squeak VM is also open source; the program is written in a subset of Smalltalk and translated 
automatically to C. This means that it is feasible to modify the BabyUML VM if needed.

• But the most important argument is that there is a very active and creative community around 
Squeak. Many ideas and even programs that are useful to BabyUML are to be found in the Squeak 
databases and mailing lists. 

Figure 4: The BabyUML laboratory is embedded in the Smalltalk object space

Figure 4 illustrates the BabyUML implementation. The baby objects may have their own classes, 
metaclasses, and metametaclasses; but they look like regular Smalltalk objects to the VM because we 
make them conform to its simple conventions so that they can interoperate with regular Squeak objects.

iii: BabyUML Layered Architecture
BabyUML is a stored program object computer. It is implemented in Squeak, a dialect of Smalltalk. 

All program elements including classes, metaclasses and compilers exist as tangible objects, merging 
program build time into run time. The Smalltalk insistence on pure object orientation invites us to shift our 
focus from the classes to the objects. We supersede the Smalltalk notion of programs with new high-level 
programming constructs gleaned from UML and transpose them to fit in the object space. The result is a 
set of high-level constructs that will help create clear solutions to complex problems.

Figure 5: The BabyUML Instantiation Architecture.
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Every object is an instance of a class. In BabyUML, this is implemented by every object having a link to 
its class object. Similarly, the class object has a link to its class object, the metaclass. Finally, the 
metaclass object has a link to the metametaclass which is an instance of itself.

This layered architecture is fundamental to BabyUML semantics. The layers from the concrete to the 
abstract are as follows:

M1 - Non-class layer: Here are the non-class objects, typically application and support objects.
M2 - Class layer: Here are the regular classes. Class objects create new instances, act as repositories 

for information common to these instances, and knows how to translate code from a human form 
to executable binary. BabyUML components are encapsulated clusters of objects. These objects 
have their own classes. One of them is the component factory; an instance is responsible for the 
component as a whole. (One of the experimental component factories combine a declarative 
description of the component members seamlessly with an imperative description of the 
methods that implement the component’s provided operations.)

M3 - Metaclass layer: Metaclass objects create new class objects and serve as repositories for their 
features such as methods for instance creation and compilers. Metaclasses thus define 
programming languages; they can be different for different metaclasses. This ensures that 
BabyUML is genuinely extendable.

M4 - MetaMetaclass layer: There is a single object in this layer; BMetaMetaclass. This object is the 
mother of all objects. All objects are, directly or indirectly, instances of this class.The 
BMetaMetaclass object creates new metaclass objects and serves as a repository for their common 
features. (BMetaMetaclass, is an instance of itself so it had to be created by a somewhat tricky 
program. )

Note that this BabyUML layered architecture is an instantiation structure, a structure that is 
independent of the class inheritance structure. See figure 30 and figure 30 on page 36 for examples. 
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Part  B:  Example Objects

We will illustrate different programming disciplines through a simple example. The example is an activity 
network called sampleNet. The activity network is a well known approach to project planning and control. 
Figure 6 shows a simple network with 4 activities (tasks). The name and duration is given for each activity. 
We will use this example to illustrate various aspects of our proposed programming discipline.

Figure 6: The sampleNet activity network

Frontloading is an operation on an activity network that computes the earliest start and finish for each 
activity given the start time for the start activities. The result of frontloading our network from week 1 is 
shown as a Gantt diagram on the right of figure 6. 

B.1:  The Simple Object

Our systems of interacting objects will be very large. The BabyUML vision is that I shall view and code 
the system in different projections. Each projection shall be precise and consistent and the aggregate of 
all projections shall constitute the code for the running system.

We start with specifying simple objects and choose to work with them in two different projections: the 
encapsulated object and the conceptual object. The implementation of the object can be described in the 
object descriptor described in "The SimpleClass" (page 27). As an example, we show an object that 
represents the actD activity in sampleNet.

i: The Encapsulated Projection

The following example of an encapsulated projection gives a “black box” view where we see the object 
as it appears to its environment.

Every object has an object identity, objectID, that is unique through space and time. There has never 
been and will never be another object with the same objectID anywhere in the world. We can thus be sure 
that any object can be linked to any other object without any danger of confusion.

The BabyUML object can only be accessed through its operations; object attributes and methods are 
invisible from outside the encapsulation. There are two mutually equivalent graphical notations for the 
excapsulated projection. The inline form in figure 7 (a) is useful in simple diagrams. The compact form of 
figure 7 (b) can be used to save screen acerage; the interface can be popped up dynamically when the 
mouse is over the object. The encapsulated projection is useful for “wiring diagrams” showing systems of 
interlinked objects.

Note that the BabyUML notation for an object is a rounded rectangle. This is to distinguish it from the 
UML classifier. The objectID is shown in angle brackets: <2232>. Some objects have a name, this is then 
shown after the objectID.

actD (2)
actB (7)

actC (3)actA (2)

ActA

ActD

ActC

ActB

1 7 92 3
week

8654
activityNetwork -composite4
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Figure 7: Example encapsulated object projection.

I executed a version of the activity network example and got the objects shown in figure 8. We see that 
the objects are interlinked, but we do not see how this is achieved.

Figure 8: “Wired” objects implementing the sampleNet example.

ii: The Conceptual Projection

We now look at the same object in the conceptual projection showing a “white box” view of the object. We 
see selected object features, but we do not see how they are realized. The conceptual projection has 
three compartments as shown in figure 9. 
• The top compartment shows the objectID <2232> with a possible name. 
• The middle compartment shows the object attributes (instance variables) with their names and 

values. A tool should show their current values as they change over time. A tool could also permit 
the addition and removal of attributes.

• The bottom compartment shows the operations. A tool could also show the code of the 
corresponding method so that it can be edited.

Issue: The conceptual projection could show apparent features, but we want the projections to be the program so we show 
implemented methods and attributes.

Figure 9: Example conceptual, white box object projection.

name
frontload: firstWeek
descriptor

simple-encapsulated-1

<2232>actD

(a)
<2232>actD

«interface»

(b)

public operations

name
frontload: firstWeek
descriptor

<2232>actD
<126>actB

<1125>actC<723>actA

activityNetwork5

predecessors {<126>. <1125>.}

earlyFinish 16
earlyStart  14
duration  3
activityName 'actD'

<2232> actD

simple-conceptual-1

frontload:

descriptor

name method

apparent
attributes

methodDict
method
method

successors { }
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Object behavior is activated when the object receives a message. The message has two parts; selector 
(name) and arguments. The object contains a dictionary, methodDict, binding selector to method. A method is 
an object, it is essentially a sequence of byte codes (operations). There are byte codes for getting and 
setting attribute values as well as for sending messages to specified objects. Object orientation gets much 
of its power from polymorphism. In BabyUML, this means that methods are local to the object so that 
different objects receiving messages with identical selectors may handle them differently.

Note that these projections show the object. The actual arrangement of classes and superclasses is 
irrelevant from the object’s point of view. SectionC.1:The SimpleClass (page 27) describes the 
implementation of our example object.
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B.2:  The Simple Component

The object-centered architecture of figure 2 on page 10 is both flexible and powerful. Systems are easy 
to master as long as they don’t get too large and too complex. But I have for years been working with 
systems containing several hundred thousand objects. They exist in a flat object space and I need to 
partition them in order to master them.

i: A Component Encapsulates Objects

An object is encapsulated; its internal realization is invisible from its outside. [UML] has the notion of 
a component that is a kind of class. In BabyUML, a component is an object that encapsulates other 
objects making them invisible from the outside. The notion is recursive; I can organize my several hundred 
thousand objects in a tree structure so that I deal with a manageable number at each level. In figure 10, 
I show a system as a component within a component. Both components are expanded so that we can see 
their internal objects.

The upside is that I may attain mastery of my objects. The downside is that many of my current object 
structures will be outlawed. I believe that the restriction is essential to the mastering of complexity 
because it will help me avoid the kind of errors where a change in one corner of a system causes a failure 
in the opposite corner. 

Figure 10: A Component is an object that encapsulates other objects

A port defines a distinct interaction point between a component and its environment. The BabyUML port 
is an object that passes messages between the component’s internal objects and the objects in its 
environment. In figure 10, the objects in the outer, blue world can only access the middle, green world 
through the blue ports. Conversely, the objects of the middle, green world can only access the outer world 
through the ports. The links between a component and its environment are applications of a facade-like 
pattern [GOF].
A final comment about high-level constructs:

There can be no leverage without rigidity. Fortran facilitates the programming of formula evaluation while 
it prohibits self-modifying programs. Structured programming facilitates simple program structures while 
it prohibits many intricate execution patterns. My own transition to structured programming was very trau-
matic; I struggled for almost half a year to create subroutines without GOTOs. But then my mind suddenly 
clicked, and I now cannot understand why GOTOs were so important.

I suspect that a transition to communication-centered programming can be equally traumatic. The way I 
think about programs will have to change, many dear constructs will no longer be permissible, and many 
work patterns will no longer be viable. BabyUML is a laboratory for experimenting with the trade-off 
between flexibility and leverage. The laboratory is described in ????sectionA.3 on page10????.

Object

Object

Object

Object

Object

Object

Object
Object

Object

«Component»

«Component»

«Port»

ComponentArchitecture

«P
or

t»

Object
Object

«Port»

«Port»«Port»
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ii: Encapsulated Projection of a Simple Component

The BabyUML SimpleComponent is a component that has a provided interface offered through its single 
provided port. Seen from its environment, a SimpleComponent looks like a regular object with objectID and 
provided operations as can be seen by comparing the object in figure 7 on page 15 and the component 
of figure 11. 

Figure 11: Two encapsulated projections of the sampleNet component

The sampleNet component is an object that realizes a particular activity network. Its members appear to 
be a number of activities, they are not visible from outside the component. The component can only be 
accessed through its provided operations as shown. The two first operations are used to build the 
network, the middle to perform the frontloading operation, and the last two are query operations returning 
textual descriptions of the network.

iii: A Conceptual Projection of the Example Component

Objects and components are interchangeable in their environment, and sampleNet could be realized by 
either. The difference becomes apparent if we go inside the encapsulation to get a conceptual projection 
of the internals. The simple object has features as shown in figure 9 on page 15, while the simple 
component is a somewhat more complex structure with port and members as illustrated in figure 12. 

Figure 12: Conceptual projection of the sampleNet component. 

The <0321> port object is visible in the component environment; its objectID is the component’s ID. Hidden 
within the component are the members, the activity objects. The port and the members are shown as 
conceptual objects. 

newActivityNamed: aString duration: anInteger
addDependencyFrom: actString1 to: actString2
frontload: firstWeek
activityNames
activityDescriptorFor: actNamString

example-black5

«Component» <0321> sampleNet

«Component»

<0321> sampleNet

«interface»
newActivityNamed: aString duration: anInteger
addDependencyFrom: actString1 to: actString2
frontload: firstWeek
activityNames
activityDescriptorFor: actNamString

provided operations

po
rt

po
rt

example-white5

«Component» sampleNet

newActivityNamed: aString duration: anInteger
addDependencyFrom: actString1 to: actString2
frontload: firstWeek
activityNames
activityDescriptorFor: actNamString

name = 'actD'
duration = 2
earlyStart = 8
earlyFinish = 9
predecessors = {<1267>.<1125>.}
successors { }
frontload: firstWeek
activityDescriptor

<2232> actD
members

«port» <0321>
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B.3:  The Mastered Component

The simple component frontloading code given in Excerpts of the sampleNet codeonpage34 looks 
clean and simple at a first glance, but it illustrates one reason why I have lost control over my software 
when the object interaction pattern gets complex. The difficulty is that the very meaning of frontloading is 
implicit and hidden in the details. 

Figure 13: Simple, distributed frontloading operation

Figure 13 shows that the frontloading process for this simple example is realized by six activations. 
Consider a realistic situation with a complex structure and many different activity classes. I would need to 
read and remember a considerable body of code to ascertain what happens at run time. I would have to 
read the detailed code to ascertain if and how the predecessors and successors variables form the true 
network. I also have to check the detailed implementation of the forntloading methods to understand the 
interaction algorithm. There is always a danger that a future maintainer in a hurry misses important 
aspects and fixes a particular problem in a way that plays havoc with the original intention. 

I suggest that a solution is to refactor the component internals to centralize the essentials and 
distribute the details. 

Figure 14: The sampleNet mastered component with its objects. 

We have seen how we can partition an object space into a hierarchy of components so that each 
component only contains a manageable number of parts. We now go one step further and see how the 
component as a whole can be responsible for its provided operations. The result is the mastero-controlled 
component as is illustrated in figure 14. Its objects are as follows:
• port<0321> Objects in the environment still access the component trough its port.
• maestro<4002>. We think of the component as an orchestra. The members are the instrumentalists; 

they do most of the work. A very small ensemble can do without a conductor; but a full blown 
orchestra must have a maestro who is responsible for the performance as a whole; who selects the 

frontload (6)

frontload (1)
frontload (3)

frontload (8)
frontload (1)

frontload (1)

example-simple-interaction5

<2200> actA
(2)

<0321> port <2261> actB
(7)

<2203> actD
(2)

<2272> actC
(3)

«Component» sampleNet

name = 'actD'
duration = 2
earlyStart = 8
earlyFinish = 9
predecessors = { actB. 'actC.}
successors { }

frontload (firstWeek : Integer)

<2203> actD

example-mastered7

«provided interface»

newActivity: aString duration: anInteger
addDependencyFrom: predName to: succName
frontload: firstWeek
activityNames
activityDescriptor

<0321>
port

<4002>
maestro
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players, assigns their roles and synchronizes their performance. Correspondingly, the maestro object 
is an integral constituent of the component, being responsible for the whole and for directing 
component interactions.

• activities. There are any number of activity objects. They are demoted from their prominence in the 
earlier, simple implementation since they are no longer responsible for the overall object interaction 
patterns.

The maestro receives the provided operations through the port <0321>. Each operation is implemented as 
an interaction that is triggered from the port, orchestrated by the maestro<4002>, and performed by the 
members as shown in the sequence diagram of figure 15.

Figure 15: The maestro controls component interaction

The small rectangles on the lifelines represent method activations. We show two of them as comments in 
the diagram1; a tool could show a selected method in a separate pane where it could be edited.

The activity computes its earlyStart under the assumption that its predecessors know their earlyFinish 
times. It is the maestro’s responsibility to ensure that this invariant is satisfied. The maestro, therefore, sends 
the frontload-message to selected activities that are either start activities with no predecessors or activities with 
predecessors that have already been frontloaded:

Maestro>>frontload: firstWeek
| frontActs |
activities do: [:act | act resetFrontload]. “ Set earlyStart to nil. “
[( frontActs := activities select: 

[:act | 
act earlyStart isNil
and: [act predecessors allSatisfy: [:pred | pred earlyStart notNil]]]

 ) notEmpty]
whileTrue:

[frontActs do: [:act | act frontload: firstWeek] ] 

1. We here switch to Smalltalk because it is more compact and because it is the basic language of BabyUML.

earlyFinish()

earlyFinish()

frontload (1)

frontload (1)

frontload (1)

activityNetwork-interaction6

frontload (1)

frontload (1)
earlyFinish()

<2200> actA
(2)

<2203> actD
(2)

<2272> actC
(3)

<2261> actB
(7)

<4002> maestro

resetFrontload ()
resetFrontload ()
resetFrontload ()
resetFrontload ()

resetFrontload
self earlyStart: nil.

frontload: start
self earlyStart: start.
self predecessors do:

[ :pred |
  self earlyStart: (self earlyStart max: pred earlyFinish + 1)
].
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We have now made the member interaction explicit and visible in the maestro code, while the details are 
still delegated to the activity parts as illustrated in the sequence diagram in figure 15.
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B.4:  The Declarative Component

In sectionB.2 on page17, I partitioned the object space into an hierarchy of encapsulated 
components. I also showed how my traditional programming style effectively hid system structure and 
behavior inside the individual member objects. In sectionB.3 on page19, I moved responsibility for the 
overall interaction from being implicit in the component member objects to becoming explicit in the 
maestro. I will now move responsibility for the object structure from being implicit in the member objects 
to becoming explicit in the component itself. 

Figure 16: UML class diagram

Figure 16 describes the sampleNet activities in a UML class diagram. This diagram can be interpreted as 
defining the Activity class; a tool can generate the class definition code such as the Smalltalk definition 
given on page 34. This use of the class diagram is powerful, but it also has its limitations. The code does 
not exhibit the important information that the predecessor/successor relationship is binary; an activity 
shall always be included in the successors of its predecessors. Equally important is that an interested 
person can only extract this information by carefully reading the code details. Inspection of a network 
instance can give a hint, but there can always be hidden exceptions motivated by special cases or caused 
by bugs .

We therefore introduce a new kind of component where the class diagram is interpreted as a 
declarative schema for a micro database that contains the component member objects. The diagram will 
be part of the component code; a reader can thus trust that this is indeed what is meant by an activity 
network in this component. Referential integrity is guaranteed and, as an added benefit, member objects 
can be persistent objects stored in a private database local to a component instance.

«schema» Network

example-schema6

Activity
name: string
duration: integer
earlyStart: integer
/earlyFinish : integer

predecessors

successors *

*
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i: Storage-Centered: A Micro “Database” Holding the Members of the Component

Figure 17 shows a component descriptor for our sampleNet with the component members stored in a 
private database. 

Figure 17: Component descriptor for a declarative component. 

The component schema can be expressed in any schema language such as SQL, OSQL, [ODMG]/ODL, 
[UML]/OCL,... As an example, we express the schema of figure 16 in the Object Definition Language of 
[ODMG]. We have simplified the activity objects by representing the structure information in separate 
Dependency objects:

class Activity
(extent activities)
{ attribute string name;
attribute short duration;
attribute short earlyStart;
attribute short earlyFinish;

};
class Dependency

(extent dependencies)
{ attribute Activity pred
attribute Activity succ

};

The choice of schema language is not important here because even the schema language can be local 
to the component. We expect many programmers will prefer to use their regular OO language; the 
essence being to centralize the structure information. We here encode the schema in Smalltalk to keep 
our example as simple as possible:

Object subclass: #Base
instanceVariableNames: ‘activities associations’. ..

Object subclass: #Activity 
instanceVariableNames: ‘name duration earlyStart’...

Activity>>earlyFinish
^^self earlyStart + self duration - 1.

Object subclass: #Association 
instanceVariableNames: ‘pred succ.’

«Component» sampleNet«port»
<0321>

maestro <4002>

«database» <0983>

name = 'actD'
duration = 2
earlyStart = 8

earlyFinish = 9
frontload: firstWeek

<2203> : Activity«schema» Network
Activity

name: string
duration: integer
earlyStart: integer
/earlyFinish : integer

predecessors

successors *

*

example-database4
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ii: Communication-Centered: Maestro-controlled interaction

We are now ready to realize the component’s provided operations. The idea is to separate the component 
into layers, each layer specifying how the component shall implement one or more of the provided 
operations as illustrated in figure 18. 

Figure 18: Layered component description. 

The collaboration defined in [UML] can be adapted to programming the provided operations:

A collaboration describes a structure of collaborating objects (roles), each performing a specialized func-
tion, which collectively accomplish some desired functionality. Its primary purpose is to explain how a 
system works and, therefore, it typically only incorporates the relevant aspects of the objects. Thus, details, 
such as the identity or class of the actual participating objects are suppressed.

A collaboration specifies a projection (or view) of a set of cooperating members. It describes the required 
links between members that play the roles of the collaboration, as well as their features. Several collab-
orations may describe different projections of the same objects.

We can program each provided operation in separate collaboration with its associated roles and 
interactions. The frontloading operation is most interesting, and we discuss it here.

Figure 19: Frontloading sequence diagram. 

activityDescriptorFor: actName

newActivityNamed: aString duration: anInteger

addDependentFrom: actName1 to: actName2
frontloadFrom: firstWeekNo

activityNames

«Component» sampleNet <0321>

LayeredComponent

example-frontload7

maestro
frontload: firstWeek

frontAct frontPreds

frontload: firstWeek

allActs

resetEarlyStart

frontload: firstWeek
self earlyStart: firstWeek.
self frontPreds do:

[:pred |
self earlyStart: (self earlyStart max: (pred earlyFinish + 1))].

frontContext

activitiesContext

[frontAct notNil]
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As with the MasteredComponent, the provided operations are realized by the component maestro object. The 
maestro method for frontloading is coded in a sequence diagram in figure 19. The method consists of two 
nested fragments called activitiesContext and frontContext.

A fragment is executed in a context, which is a dictionary (namespace) where role names are 
dynamically mapped to component members. The name of the context itself is the name of a query to the 
database. 

The appropriate language mechanisms for mapping role name to member in the code is still under study. The 
contexts should probably be on the stack to make them private to the interactions.

We need to perform three steps to realize the frontloading operation. We start by assigning 
component member objects to the roles:
• The maestro role is played by a special object within the component. 
• The frontAct role is played by an unplanned activity object with planned predecessors. 
• The frontPreds role is played by the predecessors of the frontAct.

iii: Mapping roles to members

This mapping can be expressed as database queries, for example in the Object Query Language of 
[ODMG]:

activities

is already defined as the extension of Activity.
The role named frontActivity is any one of the this set: 

define query frontActivities as
select act 
from activities
where act.earlyStart.isNil 
and

( select succ
from dependencies 
where pred = act 
and pred.earlyStart.notNil)

) isEmpty

And the predecessors:
define predecessors (Activity act) as

select pred
from dependencies
where succ = act

In Squeak, we execute the interaction in context:
Base>>inActivitiesContextDo: aBlock

allActivities := activities.
^aBlock value.
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Base>>inFrontContextRepeat: aBlock
| frontActs |

[frontActs := activities select: 
[:act |
act earlyStart isNil
and: 

[(associations select: [:assoc | assoc succ = act and: [assoc pred earlyStart isNil]]
 ) isEmpty]

].
frontActs notEmpty

]
whileTrue:
[ frontAct := frontActs anyOne.

frontPreds := (self predecessorsOf: frontAct) asArray. 
aBlock value

].

iv: Member interaction

We realize the frontloading operation as a maestro method. Figure 19 shows a UML sequence diagram 
realizing the operation. The sequence diagram is one of the very powerful graphical languages for 
behavior provided by [UML] and the maestro code for frontloading can be compiled directly from this 
diagram. 

Many programmers may prefer to code it textually. The following code is meant to be equivalent to 
the diagram:

Maestro>>frontload: firstWeek
base inActivitiesContextDo: 

[self allActivities do: [:act | act resetFrontload]
].

base inFrontContextRepeat: 
[ self frontAct frontload: firstWeek.
].

v: CPU-Centered programming of the details

We wrote the default details in the context of the interaction in figure 19. This code can be specialized in 
different activity classes, but the programmer is severely constrained because the only visible members 
are the ones visible in the context. This restricts the code writer’s scope for ingenuity and the code 
reader’s scope for confusion. 

Activity>>frontload: firstWeek
self earlyStart: firstWeek.
self frontPreds do: [:pred | self earlyStart: (self earlyStart max: (pred earlyFinish + 1))].
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Part  C:  The Classes

C.1:  The SimpleClass

We gave an example of a simple object in sectionB.1:The Simple Object(page14) and showed two 
projections. The external showed the object as a black box, while the conceptual showed the object with 
its features.

i: The black box Object Descriptor

The conceptual, white box object depicted in figure 7 on page 15 would be very inefficient if all the 
information were stored in every object because there would be a great deal of duplication. The 
implementation actually only stores the attribute values in an instance as shown with bold text on a white 
background in the figure. The rest of the information is delegated to its class and superclass objects as 
illustrated in figure 20. We coin the term Object Descriptor to denote this realization of an object consisting 
of an instance, its class object and the superclass objects.

Figure 20: The Object Descriptor consists of several objects

ii: The object implementation

There are two important kinds of relationships in figure 20; the «instanceOf» and the «subclassOf» 
relationships. An object descriptor consists of exactly one «instanceOf» followed by any number of 
«subclassOf». The objects of figure 20 are expanded into conceptual objects of the object descriptor in 
figure 21.

superclass
«subclassOf»

M1: non-class layer

M2: class layer

simple-descriptor-2

<2232> actD

<0002> Object<0148> Activity

class «instanceOf»
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Figure 21: Example object conceptual descriptor

The objects are as follows:
• The instance itself has objectID=<2232> and stores the values ‘actD’, 3, 14, 16, {<1267>. <1125>.}. 
• Every object is an instance of a class and has a link to it. Our object is an instance of class Activity, 

stored in the <0148>Activity object. This class object has a link to its superclass, <0002>Object. The 
superclass of <0002>Object is here nil, thus terminating the superclass chain.

• The names of the object’s attributes are the union of the attributes attributes of the class and all its 
superclasses.

• The object’s methods are a union of the methods defined in the methodDict attribute of its class and all 
its superclasses.

• Note that the frontload: - method is stored in the class <0148>Activity. The inspect-method is stored in the 
class <0002>Object. All of them are visible to the collaborators of the <2232> object as bona fide 
operations on that object.

• Also note that the class object <0148> has its own message interface to its own methods. In this 
particular implementation, it responds to the message new, telling it to create a new instance of itself. 
It also responds to compile: sourceText. The corresponding method is a compiler that translates the 
sourceText into a method with its byte codes and installs the method into the methodDict for later execution 
by the instances of this class, e.g., <2232>. In BabyUML, there will be compilers that translate various 
code projections into executable programs.

Every object is an instance of some class. The class of a class object is called a metaclass. It is a rich 
source of confusion that the features of the <2232>actD object is given by the descriptor objects shown in 
figure 21, while the features of the <0148>Activity class object is given by a different descriptor. This is 
discussed in more detail in sectionD.1:The MetaSimpleclass(page35)

iii: Browsing the Object Descriptor

A person exploring the object space or editing the object methods can do so with the ObjectBrowser 
shown in figure 22. The bottom row contains two multi-select lists that are used to filter the views on class/
superclass and interface respectively. The middle row shows the operations with the corresponding 
methods, and the top row shows object attributes and their current values.

The browser supports the editing of the class features. Superclasses appear as read only because 
it is felt that the programmer should not change the superclasses without seeing the consequences.
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#new =

method

method
method

M1:
class layer

simple-descriptor-1

predecessors =
earlyFinish =
earlyStart =
duration =
activityName =

<2232> actD

frontload (firstWeek : Integer) =
descriptor : Dictionary =

name : String =

method
method
method

 {<1267>. <1125>.}

  9
  8
  2
 'actD'
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Figure 22: An Object Browser IDE accesses the object descriptor

Note: The above screen dump shows an objectID that is different from other actD examples because it was 
captured from a different execution of the sampleNet test.
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C.2:  Component Merge

The merge relationship is an innovative and powerful construct that was introduced in [UML]. An extract 
of the original [UML] definition is given in appendix2 on page46 where we see that the original is a 
construct for merging model packages. In BabyUML, we explore a similar construct for merging 
components as exemplified in figure 23.

Figure 23: The component merge operation.

A component merge is an operation on two components that makes the contents of the two components 
appear combined. It is very similar to generalization in the sense that the receiving component 
conceptually adds the characteristics of the merged component to its own characteristics resulting in a 
conceptual element that combines the characteristics of both. 

i: The Object Descriptor described as Merged Components

A BabyUML component is encapsulated and can only be accessed through its provided ports. The 
merge operation extends this rule so that a merged component can appear as being an integral part of a 
receiving component; the result being a flattened description called the conceptual component.

Figure 23 illustrates how the object descriptor of figure 21 on page 28 can be defined in terms of the 
merge operation. We see that the conceptual, white box object in figure 9 on page 15 is the result of two 
merge operations. The first flatten the superclass into the class. The second makes the combination 
conceptually becoming part of the instance. An intuitive illustration is given in figure 24. 

In terms of program semantics, there is no difference between a black box program descriptor with 
explicit component merges, and a white box conceptual program where all the merges have been 
performed. The black box views of figure 23 and figure 24 are, therefore, semantically identical to the 
white box view of figure 9 on page 15.

Figure 24: The merge operator as a one way mirror.

The merge operation is intuitively like a one way mirror between the merged and receiving components:
• The elements of the merged component appear as integral parts of the receiving component.
• The elements of the receiving component are invisible from the merged component.
• Additionally, we may find it useful to require that the state of the merged elements shall not be 

changed from the receiving component.

Smalltalk -merge1
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instanceclass
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merged receivingmergedreceiving
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attributes=  {activityName...
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method

method

method
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superclass = nil
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The white and black box views are all projections of the same program and the programming environment 
continuously synchronize them with the virtual machine by applying the appropriate transformations. In 
this example, we have the «superclass» and «instance of» relations, but other relations can be added as 
needed. Some examples that will be studied in the future:
• Traits dissociates methods from the classes and define fine grained relations between them. 

[Schärli-03] presents traits as a simple compositional model for structuring object-oriented programs. 
A trait is essentially a group of pure methods that serves as a building block for classes and is a 
primitive unit of code reuse. In this model, classes are composed from a set of traits by specifying 
glue code that connects the traits together and accesses the necessary state. Methods defined in 
different traits can be merged into a flattened, conceptual trait using the traits glue specifications.

• The OOram role model synthesis [OORAM] is a sophisticated relationship between UML 
collaborations where roles in different collaborations are constrained to be played by the same 
object. Collaborations can be projections of BabyUML programs; they could be merged through the 
synthesis relationship.

ii: The sampleNet Specified as Merged Components

The sampleNet conceptual projection of figure 12 on page 18 can be realized if the NetworkPort and 
Activity classes are kept outside the component and accessed through required interfaces. This seems 
somewhat cumbersome, and we prefer to keep them inside the component. Figure 25 shows a 
conceptual view of the network component with its classes.

Figure 25: Conceptual network component.

In figure 26, we show the merged and receiving components that together make up the conceptual 
component in figure 25.

«Component» sampleNet

+newActivity (name : String, duration : Integer)
+addDependency (from, to : String)
+frontload (firstWeek: : Integer)
+activityNames () : String [] {sorted}
+activityDescriptor (name: String) : Dictionary

<0321> port

- activities : Activity[]
name = 'actD'
duration = 2
earlyStart = 8
earlyFinish = 9
predecessors = { actB. 'actC.}
successors { }

frontload (firstWeek : Integer)

<2203> actD

<1234> NetworkPort <0148> Activity

<0002> Object

example-white6
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Figure 26: Merged and receiving network components

The relationships that are implied in figure 26 are shown explicitly in figure 27. We expect that the first 
shall be all that is seen by the programmer; the detailed relationships should be managed automatically 
by the programming tools.

Figure 27: The individual relationships between the objects of figure 26.

The two last chapters have shown many different ways for viewing a program in a stored program virtual 
object computer. They are all illusions, the virtual computer deals with simple objects, classes and 
methods. Our programming discipline is an abstraction buildt on top of this; the diagrams are program 
source code in our interactive development environment. 

example-white-merge6

«merge»

<0148> Activity

<0321> NetworkPort

«Component» Network «Component» sampleNet

<0148> port

<2203> actD
merged receiving

<0002> Object
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example-white-merge-open6

«instanceOf»
<0148> Activity

<0321> NetworkPort <0148> port
<0002> Object

<2203> actD

«instanceOf»«subclassOf»
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C.3:  The Simple Component

i: The Simple Component Descriptor

The SimpleComponent is indeed simple. Figure 28 suggests that the sampleNet descriptor consists of eight 
objects: 
• Four activity instances holding the attribute values for the four example activities.
• One Activity class object holding some features common to the activity instances.
• One port instance forming the bridge from the environment and the activities. The port receives 

messages from the environment and passes them on to the appropriate activity objects. The identity 
of the port is the identity of the component as a whole.

• One NetworkPort class holding some of the port features.
• One Object class object holding features common to all instances.

Figure 28: sampleNet Component Descriptor. 

The component as a whole does not exist as an object, so we have shown it rectangular and grayed out. 
The component is not enforced by the programming environment, but is implemented by programmer 
discipline. We will later see more powerful components where the discipline is enforced by a component 
object.

ii: Implementation of the network component class

xxxx

example-descriptor5
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earlyStart =
duration =
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frontload (firstWeek: : Integer) =
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method
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  9
  8
  2
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activities = {actA. actB. actC. actD.}
newActivity (name : String, duration : Integer)
addDependency (from, to : String)
frontload (firstWeek : Integer)
activityNames () : String [] {sorted}
activityDescriptor (name: String) : Dictionary

<1234> NetworkPort <0148> Activity

class «instanceOf»class «instanceOf»

<0002> Object

superclass «subclassOf»

«component» sampleNet

{actA. actB. actC. actD.}

«port» <0321>
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iii: Excerpts of the sampleNet code

I first coded the sampleNet component of figure 12 on page 18 in my usual style, distributing state and 
behavior in a structure of interacting activity objects: 1

AbstractActivity subclass: #SimpleActivity
instanceVariableNames: 'predecessors successors counter'

poolDictionaries: ''

The activity frontload operation:
SimpleActivity>>frontload: start 

self earlyStart 
ifNil: [self counter: 0. self earlyStart: start]
ifNotNil: [self earlyStart: (start max: self earlyStart)].

self counter: self counter+1) >= self predecessors size
ifTrue: [self successors do: [:succ | succ frontload: self earlyFinish + 1] ].

Object subclass: #SimpleNetworkPort
instanceVariableNames: 'activities'
poolDictionaries: ''

SimpleNetworkPort>>frontload: firstWeek
activities do: [:act | act resetFrontload].
(activities select: [:act | act predecessors isEmpty]) 

do: [:act | act frontload: firstWeek]

1. Ie here switch to Smalltalk because it is more compact and because it is the basic language of BabyUML.
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Part  D:  The Metaclasses

D.1:  The MetaSimpleclass

i: The implementation of the Activity class object 

Every object is an instance of some class. The class of a class object is called a metaclass. It is a rich 
source of confusion that the features of the <2232>actD object is given by the descriptor objects shown in 
figure 21 on page 28, while the features of the <0148>Activity class object is given by a different descriptor, 
shown in figure 29. 

Figure 29: Object Descriptor for the class <148> Activity

Note that the class object, <0148>Activity, responds to its own messages such as new and compile:. The 
methods corresponding to these messages are stored in the class of the class, <0148>Metaclass (or actually 
its superclass, <2528>Behavior). The metaclass is not part of the <2232>actD descriptor in 
figure 21 on page 28 since it in no way influences this object’s features.

The toolmaker challenge is to exploit the power of flexible instantiation without confusing the 
programmer.

ii: The instantiation and inheritance relationships

Two additional projections of of example object are of interest. Figure 29 shows the instantiation 
architecture of our example object. This architecture is an essential part of the <2232>actD semantics.
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Figure 30: The example instantiation architecture

Common languages such as Java have a single, buildt-in metaclass. We could have made BabyUML 
equally constrained by letting <101>MetaSimpleclass be an instance of itself, thus terminating the 
instantiation chain. We want BabyUML to be extensible with different kinds of classes and different IDEs. 
We therefore added an additional layer, the <942>MetaMetaclass layer. BabyUML can thus be extended by 
the addition of new metaclasses. Tool writers can leverage this power to create new concepts. 

Class inheritance is a very powerful device for code reuse and code sharing. Figure 31 shows the 
inheritance structure initially chosen for the current example. We see that it bears no relationship to the 
instantiation structure of figure 30. The inheritance structure can be refactored without changing the 
system semantics. This particular solution is, therefore, relatively unimportant.

Figure 31: The example class inheritance structure.

The human mind is well equipped for understanding a tree structure, but it usually finds it harder to handle 
two of them simultaneously. BabyUML gains its power and extensibility from its four layered instantiation 
architecture, but application programmers should still only see the familiar class inheritance. The 
toolmaker exploits the power of metaclasses to give the programmer leverage through tools such as the 
object browser of figure 22 on page 29.
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D.2:  The MetaSimpleComponent

xxxxxxxxxx

D.3:  The MetaMasteredComponent

D.4:  The MetaDeclarativeComponent
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Part  E:  Windup

E.1:  Conclusion

So, what’s new? What’s new is that we refuse to deal with systems that are beyond human 
comprehension. What’s old is the recognition that we cannot test quality into a product, the only solution 
is to insist that our systems shall be “so simple that there are obviously no deficiencies”. The purpose of 
testing is to confirm that we have done a solid job or, in rare cases, to warn us that we need to start afresh.

Our main proposal is that we shift our focus from individual objects and classes to the notion of 
collaborating objects. We suggest that objects be clustered into hierarchical components where each 
component encapsulates state and behavior, where each component is sufficiently simple to be 
comprehensible, and where the surface area between components is explicit and under full programmer 
control. (Illustrated in figure 32).

We have also adapted the UML merge relationship so that we can deal with conceptual objects that 
have identity and where the class hierarchy appear flattened into the object itself.

Figure 32: Hierarchical components for comprehensible systems.

We have exemplified our ideas with three kinds of components; other kinds can be added as needed. The 
SimpleComponent is applicable for components with few member objects and with simple interactions. 
The MasteredComponent permits more complex interaction patterns because the interaction code is lifted 
out of the members and made explicit in a maestro object. Finally, the DeclarativeComponent permits 
even more complexity because the member objects are managed by a “database” that is local to the 
component instance. This solution ensures referential integrity, supports persistent objects if needed, and 
enforces disciplined member objects.

There is a neat kind of completeness in the declarative component. Storage-centered: inside the 
component, its member objects are stored in a private micro database. Communication-centered: the 
members interact in an orderly manner to achieve a required result. CPU-centered: members execute 
methods according to their nature. The whole arrangement is recursive; a member may, on closer study, 
turn out to be an inner component with its own, local database, etc.

I am implementing BabyUML, a laboratory for experimenting with the new discipline of programming. 
BabyUML is a stored program object computer; programs exist as class and other objects that exist 

as regular objects within components. 
BabyUML supports two mechanisms for reuse. The first is that components can be wired together 

by linking their ports. The second is by merging components, making the contents of a merged component 
effectively becoming an integral part of a receiving component. Subclassing and instantiation are object 
relationships that are supported by the component merge.

HierarchicalComponents
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BabyUML implements a new metaclass architecture. It is described in ???sectionA.3: Introduction to 
BabyUML (page10)???. It shows how object instantiation differs from class inheritance and how 
BabyUML can be extended by adding new metaclasses. It also shows that each metaclass can have its 
own interactive development environment, making BabyUML a truly multi-language discipline. (The 
components discussed in this paper will all be implemented as metaclasses in the BabyUML core).

We stated a number of success criteria in the introduction. We now revisit those criteria and discuss 
if and how they are met by the BabyUML programming discipline.
1. Master complexity. Software shall be transparent so that it can be mastered by the human brain.

- BabyUML applies a strategy of divide and conquer to ensure that the brain only has to consider a 
limited number of entities at the same time. Issues will be localized and a reader of the code is 
protected against many subtle surprises. (Clumsy code can be written in any language, but 
BabyUML makes it easier to write good, readable code.)

2. Global. The programming discipline should scale, possibly by being recursive. It should be applicable at all 
levels from global architecture to local detail. 

- The notion of a component is recursive and applies to all levels from the global to the innermost 
local.

3. Safe and secure. Safety and security issues are getting increasingly important. Protection support must be an 
essential concern throughout the programming discipline.

- Safety and security has not been discussed here, but the component seems a natural unit for 
enclosure within a firewall. Safety and security must be the primary topic during the 
implementation of a production version of BabyUML. 

4. Controlled program evolution. Requirements, design and code will evolve throughout the program lifetime. 
The discipline shall help maintain consistency between all three throughout the system life cycle.

- BabyUML is a stored program object computer. Program and data objects are all first class citizens 
in the object space, and methodologies can equally support the updating of programs and data.

5. Support software reuse and interchange. The discipline shall support the definition of software units that can 
be adapted for reuse in a variety of different contexts.

- The component is an encapsulated unit of objects with well-defined access points. The 
DeclarativeComponent supports persistent objects and the sharing of component information through 
a database.

At the time of writing, all these claims express unproven hopes. Only extended experience can 
substantiate them.

E.2:  Further work

• UML components are characterized by their provided and required interfaces. So far, we have only 
considered the provided interfaces and a high priority task is to make required interfaces equally 
controlled and visible.

• Metaclasses and tools for the three kinds of components need to be implemented.
• Better tools for inspecting and programming. The component development tools are natural early 

component implementations.
• Security and safety. These important topics can only be treated properly when a first version of the 

component metaclasses are in place.
• Persistence, integration with database products.
• Optimization. In a private communication, Dave Thomas pointed out that object, components and 

other high level constructs need not exist in the running system. The running system can be 
optimized and the high level constructs need only exist as illusions created by higher layers of 
software.

• Parallel processes could be supported in mastered components with the asynchronous member 
interaction. 
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Appendix 1:  The Declarative Component implementation

Declarative components are implemented according to the three schema architecture as illustrated in 
[Hay-03]. We interpret this architecture as follows:
• The conceptual schema defines the component universe of discourse with all its legal members and 

structures.
• The external schemas define the collaboration roles, i.e., the objects that realize the component’s 

provided operations. Their external mappings bind them to the conceptual schema by suitable views 
(queries).

• The internal schema describes how the schema is implemented in the component.

Figure 33: Three Schema Architecture (from [Hay-03])

We will now describe the sampleNet implementation as a declarative component.
The conceptual schema is given in figure 16 on page 22. Internally, the schema is implemented by 

two classes as shown in figure 34. We see that we have separated structure information from the activity 
attributes. This guarantees structural integrity and prevents smart tricks at the local activity level.
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Figure 34: The internal schema.

The class definitions could be generated from the above class diagrams:
Object subclass: #DeclarativeAssociation 

instanceVariableNames: 'pred succ'.
Object subclass: #DeclarativeMember

instanceVariableNames: ''.

The attributes of the DeclarativeMember class are all variables in the current context. They are shown as 
being derived, i.e., computed. (In this first experiment, the context variables are kept in a pool variable, but this 
will be different in future versions.)

DeclarativeMember subclass: #DeclarativeBase
instanceVariableNames: 'activities associations'

and the “real stuff”:
DeclarativeMember subclass: #DeclarativeActivity

instanceVariableNames: 'name duration earlyStart'

In addition, we need to define the maestro:
DeclarativeMember subclass: #DeclarativeMaestro

instanceVariableNames: 'base'

i: activityNamed: aString duration: anInteger

The creation of a new activity is done by a data definition call on the database:
DeclarativeBase>>addAssociationFrom: predNam to: succNam

(associations 
detect:

[:assoc | assoc pred name = predNam 
and: [assoc succ name = succNam]] 

ifNone: [nil])
ifNil:

[associations add:
(DeclarativeAssociation new initialize 

pred: (self activityNamed: predNam) 

DeclarativeMember

/allActivities
/descrAct
/descrPreds
/descrSuccs
/frontAct
/frontPreds
/maestro

DeclarativeAssociation
pred
succ

base-1

DeclarativeBase
activities
associations

Object

DeclarativeActivity
name
duration
earlyStart
/earlyFinish
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succ: (self activityNamed: succNam)
)]

This is called from the maestro:
DeclarativeMaestro>>newActivity: actNam duration: dur

base insertIntoActivities: #(#name #duration) values: {actNam. dur.}

ii: addDependentFrom: actName1 to: actName2

This is also a data definition operation on the database:
DeclarativeBase>>addAssociationFrom: predNam to: succNam

(associations detect: [:assoc | assoc pred name = predNam and: [assoc succ name = succNam]] ifNone: [nil])
ifNil:

[associations add:
(DeclarativeAssociation new initialize 

pred: (self activityNamed: predNam) 
succ: (self activityNamed: succNam)

)]

This is called from the maestro:
DeclarativeMaestro>>addDependencyFrom: predNam to: succNam

base addAssociationFrom: predNam to: succNam

iii: frontload: firstWeek

The sequence diagram of figure 19 on page 24 defines the maestro method. The external mapping 
remains to map roles to component members.

DeclarativeBase>>inActivitiesContextDo: aBlock
self allActivities: activities.

* ^aBlock value.

and the main action:
DeclarativeBase>>inFrontContextRepeat: aBlock

| frontActs |
[frontActs := activities select: 

[:act |
act earlyStart isNil

and: 
[(associations select: [:assoc | assoc succ = act and: [assoc pred earlyStart isNil]
] ) isEmpty]

].
frontActs notEmpty
]

whileTrue:
[self frontAct: frontActs anyOne. 
self frontPreds: (self predecessorsOf: frontAct) asArray. 
aBlock value].

The current bindings of frontAct and frontPeds is now known throughout the conext and can be referenced 
as derived attributes in the code:

DeclarativeMaestro>>frontload: firstWeek
base inActivitiesContextDo: 

[self allActivities do: [:act | act resetFrontload]
].

base inFrontContextRepeat: 
[ self frontAct frontload: firstWeek.
].
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Note the moving context; base inFrontContextRepeat: creates different bindings according to the current state 
of the activities.

The code in the activity objects is correspondingly simple:
DeclarativeActivity>>resetFrontload

self earlyStart: nil.

and:
DeclarativeActivity>>frontload: firstWeek

self earlyStart: firstWeek.
self frontPreds do: [:pred | self earlyStart: (self earlyStart max: (pred earlyFinish + 1))].

iv: activityNames

This is implemented as a simple database query:
DeclarativeMaestro>>activityNamesSorted

^base activityNamesSorted
DeclarativeBase>>activityNamesSorted

^(activities collect: [:act | act name]) asSortedCollection asArray

v: activityDescriptorFor: actName

Figure 35: Create the activity descriptor.

DeclarativeMaestro>>activityDescriptorFor: actNam
base inContextForActivityDescriptor: actNam do:

[^ self descrAct activityDescriptor].
DeclarativeActivity>>activityDescriptor

| dict |
dict := Dictionary new.
dict at: 'name' put: self name.
dict at: 'duration' put: self duration.
dict at: 'earlyStart' put: self earlyStart.
dict at: 'successors' put: (self descrSuccs collect: [:nod | nod name]) asArray.
dict at: 'predecessors' put: (self descrPreds collect: [:nod | nod name]) asArray.
^dict

activity-descriptor7

maestro
activityDescriptorFor: actName

activityDescriptor

activitiesContext:
actName descrPreds descrAct descrSuccs

activityDescriptor
| dict |
dict := Dictionary new.
dict at: 'name' put: self name.
...
dict at: 'successors' put: (descrSuccs collect: [:nod | nod name]) asArray.
dict at: 'predecessors' put: (descrPreds collect: [:nod | nod name]) asArray.
d̂ict
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Appendix 2:  Component Merge

The following is an extract from [UML]:
7.3.40 PackageMerge (from Kernel)
A package merge defines how the contents of one package are extended by the contents of another package.
Description
A package merge is a directed relationship between two packages, that indicates that the contents of the two 
packages are to be combined. It is very similar to Generalization in the sense that the source element 
conceptually adds the characteristics of the target element to its own characteristics resulting in an element that 
combines the characteristics of both.
This mechanism should be used when elements defined in different packages have the same name and are 
intended to represent the same concept. Most often it is used to provide different definitions of a given concept 
for different purposes, starting from a common base definition. A given base concept is extended in increments, 
with each increment defined in a separate merged package. By selecting which increments to merge, it is 
possible to obtain a custom definition of a concept for a specific end. Package merge is particularly useful in 
meta-modeling and is extensively used in the definition of the UML metamodel.
Conceptually, a package merge can be viewed as an operation that takes the contents of two packages and 
produces a new package that combines the contents of the packages involved in the merge. In terms of model 
semantics, there is no difference between a model with explicit package merges, and a model in which all the 
merges have been performed.
Associations
• mergedPackage: Package [1] References the Package that is to be merged with the receiving package of the 

Package-Merge. Subsets DirectedRelationship::target.
• receivingPackage: Package [1] References the Package that is being extended with the contents of the 

merged package of the PackageMerge. Subsets Element::owner and DirectedRelationship::source.
Semantics
A package merge between two packages implies a set of transformations, whereby the contents of the package 
to be merged are combined with the contents of the receiving package. In cases in which certain elements in the 
two packages represent the same entity, their contents are (conceptually) merged into a single resulting element 
according to the formal rules of package merge specified below.
As with Generalization, a package merge between two packages in a model merely implies these 
transformations, but the results are not themselves included in the model. Nevertheless, the receiving package 
and its contents are deemed to represent the result of the merge, in the same way that a subclass of a class 
represents the aggregation of features of all of its superclasses (and not merely the increment added by the class). 
Thus, within a model, any reference to a model element contained in the receiving package implies a reference 
to the results of the merge rather than to the increment that is physically contained in that package. This is 
illustrated by the example in figure 36 in which package P1 and package P2 both define different increments of 
the same class A (identified as P1::A and P2::A respectively). Package P2 merges the contents of package P1, 
which implies the merging of increment P1::A into increment P2::A. Package P3 imports the contents of P2 so 
that it can define a subclass of A called SubA. In this case, element A in package P3 (P3::A) represents the result 
of the merge of P1::A into P2::A and not just the increment P2::A. Note that, if another package were to import 
P1, then a reference to A in the importing package would represent the increment P1::A rather than the A 
resulting from merge.

Figure 36: Illustration of the meaning of package merge (UML figure 63)
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To understand the rules of package merge, it is necessary to clearly distinguish between three distinct entities: 
the merged increment (e.g., P1::A in figure 36 ), the receiving increment (e.g., P2::A), and the result of the merge 
transformations. The main difficulty comes from the fact that the receiving package and its contents represents 
both the operand and the results of the package merge, depending on the context in which they are considered. 
For example, in figure 36 , with respect to the package merge operation, P2 represents the increment that is an 
operand for the merge. However, with respect to the import operation, P2 represents the result of the merge. This 
dual interpretation of the same model element can be confusing, so it is useful to introduce the following 
terminology that aids understanding:
• merged package - the first operand of the merge, that is, the package that is to be merged into the receiving 

package (this is the package that is the target of the merge arrow in the diagrams).
• receiving package - the second operand of the merge, that is, the package that, conceptually, contains the 

results of the merge (and which is the source of the merge arrow in the diagrams). However, this term is used 
to refer to the package and its contents before the merge transformations have been performed.

• resulting package - the package that, conceptually, contains the results of the merge. In the model, this is, 
of course, the same package as the receiving package, but this particular term is used to refer to the package 
and its contents after the merge has been performed.

• merged element - refers to a model element that exists in the merged package.
• receiving element - is a model element in the receiving package. If the element has a matching merged 

element, the two are combined to produce the resulting element (see below). This term is used to refer to 
the element before the merge has been performed (i.e., the increment itself rather than the result).

• resulting element - is a model element in the resulting package after the merge was performed. For receiving 
elements that have a matching merged element, this is the same element as the receiving element, but in the 
state after the merge was performed. For merged elements that have no matching receiving element, this is 
the merged element. For receiving elements that have no matching merged element, this is the same as the 
receiving element.

• element type - refers to the type of any kind of TypedElement, such as the type of a Parameter or 
StructuralFeature

• element metatype - is the MOF type of a model element (e.g., Classifier, Association, Feature).
This terminology is based on a conceptual view of package merge that is represented by the schematic diagram 
in figure 37 (NB: this is not a UML diagram). The owned elements of packages A and B are all incorporated 
into the namespace of package B. However, it is important to emphasize that this view is merely a convenience 
for describing the semantics of package merge and is not reflected in the repository model, that is, the physical 
model itself is not transformed in any way by the presence of package merges.

Figure 37: Conceptual view of the package merge semantics (UML figure 64)
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