
Towards a New Discipline of Programming
with the BabyUML Language Laboratory

Trygve Reenskaug, Department of informatics, University of Oslo, Norway

VERY EARLY DRAFT 2005-06-01
Abstract
1973 marked the end of an era and the beginning of a new in my career as a computer programmer. The
first era culminated with me writing the last program of a series that gave me a comfortable feeling. The
new era came about because we moved from stable, closed systems to continuously changing, open
systems. New problems, new challenges. I have still not mastered them; I still cannot build a significant
program that is “so simple that there are obviously no deficiencies”.
There is a widespread belief that current software complexity is an unavoidable consequence of the
complexity of the requirements and that we have to tolerate deficient software. I claim that this is merely
a myth, and that our problems can be solved with adequate programming concepts, languages and tools
that leverage the communication aspects of our systems.
It is hard to do sums with roman numerals. It is equally hard to build communicating systems with current
tools. BabyUML is a laboratory for experimenting with new programming disciplines and languages. The
focus is on communicating objects rather than static classes. The laboratory is used to explore the
specification of hierarchical structures of collaborating components and to explore how to make the
component essence explicit and visible, hiding the details within the component members. The goal is to
disprove the complexity myth and to help me feel comfortable with my future programs.

i: Abstract :

Current information systems have very broad requirements including the need for openness and
distribution coupled with privacy and security. Continuous system evolution is needed to adapt them to a
changing environment. The BabyUML laboratory is an environment for experimenting with new ways of
building comprehensible and secure systems with transparent and readable code. BabyUML is a stored
program object computer. It is implemented in Squeak, a dialect of Smalltalk. All program elements
including classes, metaclasses and compilers exist as tangible objects, merging program build time into
run time. The Smalltalk insistence on pure object orientation invites us to change our focus from the
classes to the objects. We supersede the Smalltalk notion of programs with new high-level programming
constructs gleaned from UML and transpose them to fit in the object space. The result is a set of high-
level constructs that will help create clear solutions to complex problems.

BabyUML may be seen as a contribution to a possible UML 3.0; a unified, high level, and extensible
family of programming languages for distributed, stored program object computers.

In the tutorial, we will discuss the fundamental concepts of BabyUML and illustrate them with the
implementation of a concrete example.
BabyUML draft of July 25, 2005 10:41 am 00-Title.fm 1

2 00-Title.fm BabyUML draft of July 25, 2005 10:41 am

1973 marked the end of an era and the beginning of a new in my career as a computer programmer. The
first era culminated with me writing the last program of a series that gave me a comfortable feeling. The
new era came about because we moved from stable, closed systems to continuously changing, open sys-
tems. New problems, new challenges. I have still not mastered them; I still cannot build a significant pro-
gram that is “so simple that there are obviously no deficiencies”. 1
There is a widespread belief that current software complexity is an unavoidable consequence of the com-
plexity of the requirements and that we have to tolerate deficient software. I claim that this is merely a
myth, and that our problems can be solved with adequate programming concepts, languages and tools that
leverage the communication aspects of our systems. 1
It is hard to do sums with roman numerals. It is equally hard to build communicating systems with current
tools. BabyUML is a laboratory for experimenting with new programming disciplines and languages. The
focus is on communicating objects rather than static classes. The laboratory is used to explore the specifi-
cation of hierarchical structures of collaborating components and to explore how to make the component
essence explicit and visible, hiding the details within the component members. The goal is to disprove the
complexity myth and to help me feel comfortable with my future programs. 1

i: Abstract : ... 1

Part A: Introduction .. 5
A.1: Preface ... 5

i: The New Nature of Programming ... 5
ii: The Need for a New Generation .. 6
iii: Acknowledgements ... 6
iv: Outline ... 7

A.2: Three Generations of System Architectures ... 8
i: CPU-Centered Architecture .. 8
ii: Storage-Centered Architecture .. 8
iii: Communication-Centered Architectures .. 9

A.3: Introduction to BabyUML .. 10
i: The BabyUML Stored Program Object Computer ... 10
ii: The BabyUML Laboratory is Embedded in Squeak ... 11
iii: BabyUML Layered Architecture .. 12

Part B: Example Objects ... 14
B.1: The Simple Object ... 14

i: The Encapsulated Projection ... 14
ii: The Conceptual Projection ... 15

B.2: The Simple Component ... 17
i: A Component Encapsulates Objects ... 17
ii: Encapsulated Projection of a Simple Component .. 18
iii: A Conceptual Projection of the Example Component .. 18

B.3: The Mastered Component ... 19
B.4: The Declarative Component ... 22

i: Storage-Centered: A Micro “Database” Holding the Members of the Component 23
ii: Communication-Centered: Maestro-controlled interaction ... 24
iii: Mapping roles to members ... 25
iv: Member interaction ... 26
v: CPU-Centered programming of the details .. 26

Part C: The Classes ... 27
C.1: The SimpleClass .. 27
BabyUML draft of July 25, 2005 10:43 am BabyUMLTOC.fm 3

i: The black box Object Descriptor .. 27
ii: The object implementation .. 27
iii: Browsing the Object Descriptor ... 28

C.2: Component Merge ... 30
i: The Object Descriptor described as Merged Components .. 30
ii: The sampleNet Specified as Merged Components .. 31

C.3: The Simple Component ... 33
i: The Simple Component Descriptor ... 33
ii: Implementation of the network component class .. 33
iii: Excerpts of the sampleNet code .. 34

Part D: The Metaclasses ..35
D.1: The MetaSimpleclass .. 35

i: The implementation of the Activity class object .. 35
ii: The instantiation and inheritance relationships .. 35

D.2: The MetaSimpleComponent ... 37
D.3: The MetaMasteredComponent .. 37
D.4: The MetaDeclarativeComponent .. 37

Part E: Windup .. 38
E.1: Conclusion ... 38
E.2: Further work .. 39

References 40
Appendix 1: The Declarative Component implementation... 42

i: activityNamed: aString duration: anInteger .. 43
ii: addDependentFrom: actName1 to: actName2 ... 44
iii: frontload: firstWeek .. 44
iv: activityNames .. 45
v: activityDescriptorFor: actName ... 45

Appendix 2: Component Merge .. 46
4 BabyUMLTOC.fm BabyUML draft of July 25, 2005 10:43 am

Part A: Introduct ion

A.1: Preface

Nusse was the first Norwegian modern computer, it started its operation in 1953. It was a binary computer;
all programs and data had a uniformly binary representation. Its memory sported a grand total of 16,384
bits organized in 512 words of 32 bits each. It was a stored program computer; a program could operate
on any word in memory, including the program itself.

I joined the Nusse team in 1957. I learnt to program sitting in front of the CPU console watching the
registers, changing their bits one by one and stepping through the program instructions. I was in intimate
contact with the CPU and had to bridge the gap to the problem domain in my head. There were no aids
to program structuring. Program and data words were more or less haphazardly sprawled all over
memory. I soon learned that 512 words was more than my brain could master. A typical symptom was that
an innocuous change in one corner of a program caused a catastrophic failure in the opposite corner.

Our software engineering savvy improved over the years and culminated in 1973 . This was the last
time I experienced a program that made me feel comfortable. The problem solved was nontrivial. We
worked in a waterfall fashion on its specification, design and database schema until everything was clear,
simple and well understood. We then coded one subroutine at the time, using peer review to ensure its
correctness before we tested it. The unit tests revealed one error per four hundred lines of code, system
tests and subsequent use revealed none. The completion of this 1973 program gave us great satisfaction
and we would have been very surprised if it hadn’t fulfilled our expectations throughout its lifetime.

i: The New Nature of Programming

The 1973 program marked the end of an era because the nature of our work with computers underwent
a fundamental change at that time:
• Evolution. The static user requirements of the sixties were replaced by tight loops where new

programs caused new user work procedures that in its turn lead to new requirements. It was no
longer practicable to maintain specification and design documents synchronized with the rapidly
evolving programs.

• Open systems. The systems of the sixties were closed, monolithic, database centered systems. We
now saw open systems of distributed components with no clear boundaries between them. In the
sixties, an engineer who wanted to retrieve some data from the design system and feed them into
the materials management system needed two computer terminals on his desk. It was a great
advance when he could open two windows on his screen and copy-paste the data. What he really
wanted was a tool that facilitated the data transfer; automatically but under user control. Standalone
programs were gradually replaced by subsystems that were grafted into an existing system.
Communication had become the glue that joined various subsystems together.

• Multi process. Modern systems run on networks of distributed computers and are inherently multi-
process.

• Ownership. Users were becoming more computer literate and demanded better control over their
computer-based information and services. This put new demands on system transparency.

The answer to the new challenges was object orientation. Systems became systems of collaborating
objects that have unique identity, and that encapsulates state and behavior. We first tried programming in
Simula, but were stumped by its lack of persistent objects and by its typing system that forced us to break
the encapsulation and think in terms of object implementations (classes). We made a preprocessor to
Fortran making it somewhat object oriented. We finally ended with Smalltalk as the solution that best fitted
our needs.

Smalltalk defines a virtual computer built on top of various combinations of hardware and operating
systems. It is a virtual object computer; all programs and data have a uniform object representation. Its
memory contains a large number of objects with identity encapsulating state and behavior. It is a stored
program computer; programs exist as regular objects at run time and can operate on any object, including
itself.
BabyUML draft of July 25, 2005 10:40 am A01-Preface.fm 5

I learned Smalltalk as a visiting scientist at Xerox PARC in 1977/78 by sitting in front of the computer
screen watching the objects in a debugger, changing their attributes and behavior on the fly and stepping
through the program instructions. I was in intimate contact with the objects and had to bridge the gap to
the problem domain in my head. Classes and subclasses were used to structure the program code, but
my objects were more or less haphazardly sprawled all over the object space. I soon learned that a
system consisting of some 300,000 weakly structured objects was more than my brain could master. A
typical symptom was that an innocuous change in one corner of a system caused a catastrophic failure
in the opposite corner.

ii: The Need for a New Generation

Even today, my programs are more like the stuff I produced in 1957 than the beautiful edifice of 1973.
Thirty years of patching my 1973 software engineering discipline has not solved the problem; my brain
cannot fathom my programs.

Many marketeers want us to believe that the complexity and poor quality of current software is an
unavoidable consequence of the complex requirements. I claim that this is a myth, and that our problems
are caused by the lack of adequate programming concepts, languages and tools. I have embarked upon
a project, BabyUML, that shall demonstrate that it is indeed possible to write simple, transparent programs
that satisfy our requirements. I hope BabyUML will enable me to write significant programs that make me
feel as comfortable as I felt in 1973.

BabyUML shall produce a high level, communication centered programming discipline for a stored
program object computer. It is more than a language because BabyUML shall support many languages
used for describing different aspects of the systems. I have somewhat whimsically chosen the name;
Baby because the world’s first, very small stored program computer was the English Baby. UML because
I glean many powerful constructs from UMLe.

The BabyUML success criteria are as follows:
1. Master complexity. Software should be transparent so that it can be mastered by the human brain.
2. Global. The programming discipline should scale, possibly by being recursive. It should be

applicable at all levels from global architecture to local detail.
3. Safe and secure. Safety and security issues are getting increasingly important. Protection support

must be an essential concern throughout the programming discipline.
4. Controlled program evolution. Requirements, design and code will evolve throughout the program

lifetime. The discipline shall help maintain consistency between all three throughout the system life
cycle.

5. Support software reuse and interchange. The discipline shall support the definition of software units
that can be adapted for reuse in a variety of different contexts.

C.A.R. Hoare has given a very potent expression of our choices: “There are two ways of constructing a
software design: One way is to make it so simple that there are obviously no deficiencies and the other is to make it
so complicated that there are no obvious deficiencies.” The first relies on program transparency and readability
to achieve quality programs. The second has to rely on testing. To quote Edsger Dijkstra: “Program testing
can be used to show the presence of bugs, but never to show their absence!”. The best way to avoid bugs
is clearly not to put them in, in the first place. The goal of the BabyUML project is to find a discipline of
programming that supports getting it right the first time. The goal of the BabyUML laboratory is to let me
experiment with new methods, tools and languages that help me achieve this goal.

iii: Acknowledgements

The idea and implementation of a stored program object computer is due to Alan Kay, Dan Ingalls, Adele
Goldberg and the Smalltalk team at Xerox PARC [Blue book]. UML is the combined result of a great
number of people. Taken together, they have documented many concepts that are useful for modeling
large systems of interacting objects.

Special thanks to Dan Ingalls for his help with the BabyUML MetaMetaclass and other Squeak
constructs. Also my sincere thanks to Ragnar Normann who has helped me with database issues and
who has helped me force my brain to thinking in declarative terms without immediately translating to my
usual imperative code.
6 A01-Preface.fm BabyUML draft of July 25, 2005 10:40 am

iv: Outline

The rest of the paper is organized as follows:
• SectionA.2:Three Generations of System Architectures (page 8) contemplates cpu-, storage-, and

communication-centered architectures. It finds that current programming languages are inadequate
for communication-centered programming and suggests that we fill the gap with a new discipline of
programming.

• SectionA.3: Introduction to BabyUML (page 10) describes the BabyUML laboratory. It is based on
Squeak, a dialect of Smalltalk. Its objects are embedded within a standard release of Squeak so that
regular Squeak is available for the instrumentation of the BabyUML laboratory. It also reports the
BabyUML meta- and metametaclasses.

The notion of an object is commonly defined as being an instance of a class. In BabyUML, an object is an
independent concept being defined as an entity that has unique identity and that encapsulates state and
behavior. All objects have the same characteristics when seen from the outside; they communicate by
sending messages to each other. The first version of BabyUML recognizes three different realizations as
described in the following three sections. The realizations are freely interchangeable in their environment,
but their internals have different architectures and are supported by different tools and languages.
• SectionB.1:The Simple Object (page 14) takes us back to first principles. We deal with the object as

a concept in itself; independent of its class and other details of code. This lets us focus on the object
as a partner in communication, hiding its implementation details for separate study.

• SectionB.2:The Simple Component (page 17) discusses how we partition the object space into
components, where a component is an object that encapsulates other objects. It can only be
accessed through its ports that are characterized by their provided and required interfaces. This
gives an hierarchical system composition, supporting a strategy of “divide and conquer”.

• SectionC.2:Component Merge (page 30) discusses an extension of the concept of subclassing to
the specialization of components. This idea from UML is a powerful tool for the reuse of component
designs.

• SectionB.3:The Mastered Component (page 19) has a “micro main program” called a maestro that
makes the member interaction explicit, visible and manageable.

• SectionB.4:The Declarative Component (page 22) makes the member structure explicit, visible and
manageable. It is done by describing the structure declaratively, using queries to create the external
views needed for different purposes.

BabyUML is still at an early stage, but I feel that some conclusions my be drawn even if a great deal of
work remains to make it usable in practical programming.
• SectionE.1:Conclusion (page 38) summarizes the work done so far and draws a conclusion.
• SectionE.2:Further work (page 39) describes some interesting and important work that waits to be

done.
“The proof of the pudding is in the eating”. The BabyUML laboratory is used to test out the ideas in
practical programming:
• Appendix 2:Component Merge (page46) is a quote from the UML 2.0 specification document. It

defines the somewhat elusive notion of UML merge. I hope that the BabyUML version of the concept
can be substantially clarified through simplification, good examples and powerful tools.
BabyUML draft of July 25, 2005 10:40 am A01-Preface.fm 7

A.2: Three Generations of System Architectures

It is illuminating to compare the evolution of computer hardware architecture to the corresponding
evolution of software architecture and design principles.

Figure 1: Three system architectures

Figure 1 illustrates three generations of hardware and software architectures reflecting three different
ways of thinking about data processing and programming; CPU-Centered, Storage-Centered, and
Communication_Centered as discussed below.

i: CPU-Centered Architecture

Nusse was a binary computer; all programs and data had a uniformly binary representation. Its various
units were arranged around a CPU that controlled all its operations as illustrated on the left of figure 1.

Hardware and software evolved very quickly from a primitive beginning. I wrote my first programs in
binary. The next step was an assembler that enabled me to write the instructions in symbolic form. The
transition to an algorithmic language was a somewhat traumatic step. The upside was that my programs
were closer to the problem domain because the detailed CPU instructions were generated automatically.
The downside was that I could no longer write programs that operated upon themselves. In a sense, I had
lost contact with the stored program computer.

ii: Storage-Centered Architecture

For a short period in the sixties, computers were built with a “multi-port memory” in the center and various
units arranged around it as illustrated in the middle of figure 1.

In 1960 , we launched our first major software development project. The product was Autokon, a
CAD/CAM system that maintained its leadership in the world’s shipbuilding industry for more than 25
years. We also moved to a more powerful computer, the Swedish Facit EDB3 that for a short time was
the world’s fastest. We were very fortunate with this computer because it had a “carousel” tape station
consisting of a removable wheel with 64 tape spools. This made it feasible to store all information about
a ship in a random access database that fitted on one carousel wheel. Various design programs were
arranged around the database, accessing the data in different ways depending on the needs of the
programs. This database-centered software architecture corresponds to the memory-centered hardware
architecture, demoting the CPU-centered applications to be subordinated the central data store.

Input
Output

Central
Processing

Unit

Input

Tape

Output

Central
Processing
Unit (CPU)

Disk

Memory

Memory

Input

Tape

Central
Processing
Unit (CPU)

Disk

C
om

m
un

ic
at

io
n

B
us

Communication-CenteredStorage-CenteredCPU-Centered
[1GL]Binary

[2GL] Assembly
[3GL]FORTRAN, Algol

Databases
[4GL] Schema language, NIAM

HTTP / HTML
[3GL++] C++, Java, C#

?? [6GL] ??

Output

(CPU)

Tape Memory
8 A02-ThreeGenerations.fm BabyUML draft of July 25, 2005 10:40 am

Applications are severely restricted in that the structuring, storage and retrieval of persistent data is the
exclusive prerogative of the database system with its schemas and access mechanisms.

iii: Communication-Centered Architectures

Hardware moved very quickly to communication-centered architectures with a common “bus” where
units of all kinds could be plugged in as illustrated to the right of figure 1. The architecture was soon
extended to interconnect the computers themselves. The Arpanet evolved into the internet and was
augmented with local intranets.

The last stage in the evolution of software architectures has gradually followed the lead from
hardware. Client-server architectures such as Enterprise Java Beans (EJB) are early examples. [Web
Services] is another example. Object oriented programming has entered the main stream.

Simula, Java, C++ and C# are touted as object oriented programming languages, but they are really
class oriented. Java is to object orientation what Cobol is to databases because Java does not support
the specification of systems of interacting objects, only their parts. We clearly need a counterpart to the
discipline enforced by databases; a discipline of programming that gives us high-level control of
component interconnection and interaction.

I believe a new, communication-centered discipline must subsume the CPU- and storage-centered
approaches, creating a new layer of system organization on top of the other two:
• Communication-centered: UML collaborations and interactions can be used to specify object

communication.
• Storage-centered: UML class diagrams can be used to declare object structures
• CPU-centered: Smalltalk or Java methods can be used to specify the detailed behavior of objects.
We will unify all three architectures in the following sections.
BabyUML draft of July 25, 2005 10:40 am A02-ThreeGenerations.fm 9

A.3: Introduction to BabyUML

Object oriented architectures are a special case of communication-oriented architectures as illustrated in
figure 2. Each object is like a virtual computer with its identity and encapsulated state and behavior.
Conceptually, the objects interact with each other. In reality, the interaction is realized by a bus such as
the Java or Smalltalk virtual machine (VM) or the internet.

Figure 2: Communication-centered software architecture

Alan Kay once said that “an operating system is what the language designers forgot to put into the
language”. We could similarly claim that UML is what the language designers forgot to put into the
language. UML is a language for specifying system models and is not directly executable. BabyUML is a
discipline of programming encompassing several languages for specifying object communication, storage
and computation. The UML metamodel is not directly applicable in BabyUML, but many of its constructs
can be simplified and adapted to our new discipline of programming.

Talking and writing about a new programming discipline doesn’t mean much without at least one
concrete example that illustrates its feasibility and the usefulness of its proposed features. BabyUML is a
laboratory for experimenting with communication-centered architectures. Most of it is still plans and other
vaporware, but the skeleton of its metamodel has been implemented in the Squeak, a dialect of Smalltalk.

i: The BabyUML Stored Program Object Computer

Nusse, our computer anno 1953, was a computer were the smallest adressable unit was a word of 32
bits. Correspondingly, BabyUML is a computer where the smallest adressable unit is an object that has a
unique identity and that encapsulates state and behavior.

Smalltalk [Blue book] is a virtual, stored program, object computer as illustrated in figure 3. Object,
because its smallest unit of data is the object. (The bits of the underlying computer are hidden by the VM).
All data are represented as objects; even booleans, numbers and characters. Virtual, because it is
realized in software by the Smalltalk Virtual Machine (VM). Stored program because programs can be
seen and manipulated as regular objects. A program can operate upon any object in the VM, including
the program itself.

C
om

m
un

ic
at

io
n

B
us

 (V
M

)

Object

Object

Object

Object

Object

ComputerDistribution
10 A03-BabyUMLlaboratory.fm BabyUML draft of July 25, 2005 10:40 am

Figure 3: Smalltalk is a virtual, stored program, object computer

The objects are stored in the Smalltalk object space, the image. The VM creates a new object when told
to do so by a method; returning the objectID (oop) of the new object so it can later be the receiver of
messages.

Objects that cannot be reached directly or indirectly from a special root object are removed by the
garbage collector so that their physical memory space can be reused. The Smalltalk VM also reuses the
oop, but this conflicts with our basic idea of an object where the objectID is unique in space and time. We
think of the Smalltalk oop as a local alias for a global, immutable object ID. The ongoing work with [DOI]
could be a good starting point for a suitable standard.

The VM executes byte codes that it finds in a CompiledMethod object. A byte code can, for example,
tell it to transfer a message from the current object to a receiver object. It looks up the methodDict in the
receiver to find the method corresponding to the message selector. It then puts the message arguments
on its stack and executes the byte codes of the new method.

The VM expects to find the format, methodDict, and superClass attributes at specific positions in the class
object. The attributes are marked with orange color in figure 21 on page 28. The the remainder of the
class features can be different in different class implementations.

There is a byte code for saving the image to file. It causes all objects, including the stack and the
program counter, to be saved to file. This file can later be restored as an image and the execution
continued at the next byte code location.

There is no way to start the execution of a new program from scratch; every execution is the
continuation of some other execution. New programs are created as modifications to an ongoing
execution and can be saved in a new image file. (Alternatively, one can save the program source code
for later compilation into an image. This capability is not part of the object computer as such, but is part
of a particular programming development environment).

ii: The BabyUML Laboratory is Embedded in Squeak

Smalltalk is an ideal proving ground for a new discipline of programming. The Smalltalk notions of class,
method, programing language and programming tools are all realized by objects in the image. A new
class is created by instantiating a metaclass; another object. The code for a method is translated from its
text form to byte codes by a compiler method that is part of the class object. This means that BabyUML
can make its own variants of the default Smalltalk program objects giving them their own notions of
programs, programming language and tools.

The choice of Smalltalk for implementing BabyUML was, therefore, simple. The choice of its Squeak
dialect was harder. It is fairly easy to learn the semantics and syntax of the Smalltalk programming
language, but it can be frustrating to become familiar with its pragmatics and class libraries. Squeak is
even more frustrating because it is a rapidly evolving environment with a large number of undocumented
features in different states of completion. But the advantages far outweigh the objections:
• Squeak is open source; there are no obstacles to the distribution of the BabyUML laboratory to

anybody who might want to experiment with it.

Smalltalk Object Space (Image))

Object

Object

Object

Object

Object

Smalltalk
Virtual Machine (VM)
BabyUML draft of July 25, 2005 10:40 am A03-BabyUMLlaboratory.fm 11

• The Squeak VM is also open source; the program is written in a subset of Smalltalk and translated
automatically to C. This means that it is feasible to modify the BabyUML VM if needed.

• But the most important argument is that there is a very active and creative community around
Squeak. Many ideas and even programs that are useful to BabyUML are to be found in the Squeak
databases and mailing lists.

Figure 4: The BabyUML laboratory is embedded in the Smalltalk object space

Figure 4 illustrates the BabyUML implementation. The baby objects may have their own classes,
metaclasses, and metametaclasses; but they look like regular Smalltalk objects to the VM because we
make them conform to its simple conventions so that they can interoperate with regular Squeak objects.

iii: BabyUML Layered Architecture
BabyUML is a stored program object computer. It is implemented in Squeak, a dialect of Smalltalk.

All program elements including classes, metaclasses and compilers exist as tangible objects, merging
program build time into run time. The Smalltalk insistence on pure object orientation invites us to shift our
focus from the classes to the objects. We supersede the Smalltalk notion of programs with new high-level
programming constructs gleaned from UML and transpose them to fit in the object space. The result is a
set of high-level constructs that will help create clear solutions to complex problems.

Figure 5: The BabyUML Instantiation Architecture.

Squeak Object Space (Image))

Squeak
Virtual Machine (VM)

Object

Object

Object

BabyUML Object Space

BabyObject

BabyObject

MetaMetaclass layer

Class layer

Metaclass layer

«instance of»

«instance of»

«instance of»

NonClass layer

M4

M3

M2

M1
Instantiation8
12 A03-BabyUMLlaboratory.fm BabyUML draft of July 25, 2005 10:40 am

Every object is an instance of a class. In BabyUML, this is implemented by every object having a link to
its class object. Similarly, the class object has a link to its class object, the metaclass. Finally, the
metaclass object has a link to the metametaclass which is an instance of itself.

This layered architecture is fundamental to BabyUML semantics. The layers from the concrete to the
abstract are as follows:

M1 - Non-class layer: Here are the non-class objects, typically application and support objects.
M2 - Class layer: Here are the regular classes. Class objects create new instances, act as repositories

for information common to these instances, and knows how to translate code from a human form
to executable binary. BabyUML components are encapsulated clusters of objects. These objects
have their own classes. One of them is the component factory; an instance is responsible for the
component as a whole. (One of the experimental component factories combine a declarative
description of the component members seamlessly with an imperative description of the
methods that implement the component’s provided operations.)

M3 - Metaclass layer: Metaclass objects create new class objects and serve as repositories for their
features such as methods for instance creation and compilers. Metaclasses thus define
programming languages; they can be different for different metaclasses. This ensures that
BabyUML is genuinely extendable.

M4 - MetaMetaclass layer: There is a single object in this layer; BMetaMetaclass. This object is the
mother of all objects. All objects are, directly or indirectly, instances of this class.The
BMetaMetaclass object creates new metaclass objects and serves as a repository for their common
features. (BMetaMetaclass, is an instance of itself so it had to be created by a somewhat tricky
program.)

Note that this BabyUML layered architecture is an instantiation structure, a structure that is
independent of the class inheritance structure. See figure 30 and figure 30 on page 36 for examples.
BabyUML draft of July 25, 2005 10:40 am A03-BabyUMLlaboratory.fm 13

Part B: Example Objects

We will illustrate different programming disciplines through a simple example. The example is an activity
network called sampleNet. The activity network is a well known approach to project planning and control.
Figure 6 shows a simple network with 4 activities (tasks). The name and duration is given for each activity.
We will use this example to illustrate various aspects of our proposed programming discipline.

Figure 6: The sampleNet activity network

Frontloading is an operation on an activity network that computes the earliest start and finish for each
activity given the start time for the start activities. The result of frontloading our network from week 1 is
shown as a Gantt diagram on the right of figure 6.

B.1: The Simple Object

Our systems of interacting objects will be very large. The BabyUML vision is that I shall view and code
the system in different projections. Each projection shall be precise and consistent and the aggregate of
all projections shall constitute the code for the running system.

We start with specifying simple objects and choose to work with them in two different projections: the
encapsulated object and the conceptual object. The implementation of the object can be described in the
object descriptor described in "The SimpleClass" (page 27). As an example, we show an object that
represents the actD activity in sampleNet.

i: The Encapsulated Projection

The following example of an encapsulated projection gives a “black box” view where we see the object
as it appears to its environment.

Every object has an object identity, objectID, that is unique through space and time. There has never
been and will never be another object with the same objectID anywhere in the world. We can thus be sure
that any object can be linked to any other object without any danger of confusion.

The BabyUML object can only be accessed through its operations; object attributes and methods are
invisible from outside the encapsulation. There are two mutually equivalent graphical notations for the
excapsulated projection. The inline form in figure 7 (a) is useful in simple diagrams. The compact form of
figure 7 (b) can be used to save screen acerage; the interface can be popped up dynamically when the
mouse is over the object. The encapsulated projection is useful for “wiring diagrams” showing systems of
interlinked objects.

Note that the BabyUML notation for an object is a rounded rectangle. This is to distinguish it from the
UML classifier. The objectID is shown in angle brackets: <2232>. Some objects have a name, this is then
shown after the objectID.

actD (2)
actB (7)

actC (3)actA (2)

ActA

ActD

ActC

ActB

1 7 92 3
week

8654
activityNetwork -composite4
14 B01-SimpleObject.fm BabyUML draft of July 25, 2005 10:40 am

Figure 7: Example encapsulated object projection.

I executed a version of the activity network example and got the objects shown in figure 8. We see that
the objects are interlinked, but we do not see how this is achieved.

Figure 8: “Wired” objects implementing the sampleNet example.

ii: The Conceptual Projection

We now look at the same object in the conceptual projection showing a “white box” view of the object. We
see selected object features, but we do not see how they are realized. The conceptual projection has
three compartments as shown in figure 9.
• The top compartment shows the objectID <2232> with a possible name.
• The middle compartment shows the object attributes (instance variables) with their names and

values. A tool should show their current values as they change over time. A tool could also permit
the addition and removal of attributes.

• The bottom compartment shows the operations. A tool could also show the code of the
corresponding method so that it can be edited.

Issue: The conceptual projection could show apparent features, but we want the projections to be the program so we show
implemented methods and attributes.

Figure 9: Example conceptual, white box object projection.

name
frontload: firstWeek
descriptor

simple-encapsulated-1

<2232>actD

(a)
<2232>actD

«interface»

(b)

public operations

name
frontload: firstWeek
descriptor

<2232>actD
<126>actB

<1125>actC<723>actA

activityNetwork5

predecessors {<126>. <1125>.}

earlyFinish 16
earlyStart 14
duration 3
activityName 'actD'

<2232> actD

simple-conceptual-1

frontload:

descriptor

name method

apparent
attributes

methodDict
method
method

successors { }
BabyUML draft of July 25, 2005 10:40 am B01-SimpleObject.fm 15

Object behavior is activated when the object receives a message. The message has two parts; selector
(name) and arguments. The object contains a dictionary, methodDict, binding selector to method. A method is
an object, it is essentially a sequence of byte codes (operations). There are byte codes for getting and
setting attribute values as well as for sending messages to specified objects. Object orientation gets much
of its power from polymorphism. In BabyUML, this means that methods are local to the object so that
different objects receiving messages with identical selectors may handle them differently.

Note that these projections show the object. The actual arrangement of classes and superclasses is
irrelevant from the object’s point of view. SectionC.1:The SimpleClass (page 27) describes the
implementation of our example object.
16 B01-SimpleObject.fm BabyUML draft of July 25, 2005 10:40 am

B.2: The Simple Component

The object-centered architecture of figure 2 on page 10 is both flexible and powerful. Systems are easy
to master as long as they don’t get too large and too complex. But I have for years been working with
systems containing several hundred thousand objects. They exist in a flat object space and I need to
partition them in order to master them.

i: A Component Encapsulates Objects

An object is encapsulated; its internal realization is invisible from its outside. [UML] has the notion of
a component that is a kind of class. In BabyUML, a component is an object that encapsulates other
objects making them invisible from the outside. The notion is recursive; I can organize my several hundred
thousand objects in a tree structure so that I deal with a manageable number at each level. In figure 10,
I show a system as a component within a component. Both components are expanded so that we can see
their internal objects.

The upside is that I may attain mastery of my objects. The downside is that many of my current object
structures will be outlawed. I believe that the restriction is essential to the mastering of complexity
because it will help me avoid the kind of errors where a change in one corner of a system causes a failure
in the opposite corner.

Figure 10: A Component is an object that encapsulates other objects

A port defines a distinct interaction point between a component and its environment. The BabyUML port
is an object that passes messages between the component’s internal objects and the objects in its
environment. In figure 10, the objects in the outer, blue world can only access the middle, green world
through the blue ports. Conversely, the objects of the middle, green world can only access the outer world
through the ports. The links between a component and its environment are applications of a facade-like
pattern [GOF].
A final comment about high-level constructs:

There can be no leverage without rigidity. Fortran facilitates the programming of formula evaluation while
it prohibits self-modifying programs. Structured programming facilitates simple program structures while
it prohibits many intricate execution patterns. My own transition to structured programming was very trau-
matic; I struggled for almost half a year to create subroutines without GOTOs. But then my mind suddenly
clicked, and I now cannot understand why GOTOs were so important.

I suspect that a transition to communication-centered programming can be equally traumatic. The way I
think about programs will have to change, many dear constructs will no longer be permissible, and many
work patterns will no longer be viable. BabyUML is a laboratory for experimenting with the trade-off
between flexibility and leverage. The laboratory is described in ????sectionA.3 on page10????.

Object

Object

Object

Object

Object

Object

Object
Object

Object

«Component»

«Component»

«Port»

ComponentArchitecture

«P
or

t»

Object
Object

«Port»

«Port»«Port»
BabyUML draft of July 25, 2005 10:40 am B02-SimpleComponent.fm 17

ii: Encapsulated Projection of a Simple Component

The BabyUML SimpleComponent is a component that has a provided interface offered through its single
provided port. Seen from its environment, a SimpleComponent looks like a regular object with objectID and
provided operations as can be seen by comparing the object in figure 7 on page 15 and the component
of figure 11.

Figure 11: Two encapsulated projections of the sampleNet component

The sampleNet component is an object that realizes a particular activity network. Its members appear to
be a number of activities, they are not visible from outside the component. The component can only be
accessed through its provided operations as shown. The two first operations are used to build the
network, the middle to perform the frontloading operation, and the last two are query operations returning
textual descriptions of the network.

iii: A Conceptual Projection of the Example Component

Objects and components are interchangeable in their environment, and sampleNet could be realized by
either. The difference becomes apparent if we go inside the encapsulation to get a conceptual projection
of the internals. The simple object has features as shown in figure 9 on page 15, while the simple
component is a somewhat more complex structure with port and members as illustrated in figure 12.

Figure 12: Conceptual projection of the sampleNet component.

The <0321> port object is visible in the component environment; its objectID is the component’s ID. Hidden
within the component are the members, the activity objects. The port and the members are shown as
conceptual objects.

newActivityNamed: aString duration: anInteger
addDependencyFrom: actString1 to: actString2
frontload: firstWeek
activityNames
activityDescriptorFor: actNamString

example-black5

«Component» <0321> sampleNet

«Component»

<0321> sampleNet

«interface»
newActivityNamed: aString duration: anInteger
addDependencyFrom: actString1 to: actString2
frontload: firstWeek
activityNames
activityDescriptorFor: actNamString

provided operations

po
rt

po
rt

example-white5

«Component» sampleNet

newActivityNamed: aString duration: anInteger
addDependencyFrom: actString1 to: actString2
frontload: firstWeek
activityNames
activityDescriptorFor: actNamString

name = 'actD'
duration = 2
earlyStart = 8
earlyFinish = 9
predecessors = {<1267>.<1125>.}
successors { }
frontload: firstWeek
activityDescriptor

<2232> actD
members

«port» <0321>
18 B02-SimpleComponent.fm BabyUML draft of July 25, 2005 10:40 am

B.3: The Mastered Component

The simple component frontloading code given in Excerpts of the sampleNet codeonpage34 looks
clean and simple at a first glance, but it illustrates one reason why I have lost control over my software
when the object interaction pattern gets complex. The difficulty is that the very meaning of frontloading is
implicit and hidden in the details.

Figure 13: Simple, distributed frontloading operation

Figure 13 shows that the frontloading process for this simple example is realized by six activations.
Consider a realistic situation with a complex structure and many different activity classes. I would need to
read and remember a considerable body of code to ascertain what happens at run time. I would have to
read the detailed code to ascertain if and how the predecessors and successors variables form the true
network. I also have to check the detailed implementation of the forntloading methods to understand the
interaction algorithm. There is always a danger that a future maintainer in a hurry misses important
aspects and fixes a particular problem in a way that plays havoc with the original intention.

I suggest that a solution is to refactor the component internals to centralize the essentials and
distribute the details.

Figure 14: The sampleNet mastered component with its objects.

We have seen how we can partition an object space into a hierarchy of components so that each
component only contains a manageable number of parts. We now go one step further and see how the
component as a whole can be responsible for its provided operations. The result is the mastero-controlled
component as is illustrated in figure 14. Its objects are as follows:
• port<0321> Objects in the environment still access the component trough its port.
• maestro<4002>. We think of the component as an orchestra. The members are the instrumentalists;

they do most of the work. A very small ensemble can do without a conductor; but a full blown
orchestra must have a maestro who is responsible for the performance as a whole; who selects the

frontload (6)

frontload (1)
frontload (3)

frontload (8)
frontload (1)

frontload (1)

example-simple-interaction5

<2200> actA
(2)

<0321> port <2261> actB
(7)

<2203> actD
(2)

<2272> actC
(3)

«Component» sampleNet

name = 'actD'
duration = 2
earlyStart = 8
earlyFinish = 9
predecessors = { actB. 'actC.}
successors { }

frontload (firstWeek : Integer)

<2203> actD

example-mastered7

«provided interface»

newActivity: aString duration: anInteger
addDependencyFrom: predName to: succName
frontload: firstWeek
activityNames
activityDescriptor

<0321>
port

<4002>
maestro
BabyUML draft of July 25, 2005 10:40 am 07-Maestro.fm 19

players, assigns their roles and synchronizes their performance. Correspondingly, the maestro object
is an integral constituent of the component, being responsible for the whole and for directing
component interactions.

• activities. There are any number of activity objects. They are demoted from their prominence in the
earlier, simple implementation since they are no longer responsible for the overall object interaction
patterns.

The maestro receives the provided operations through the port <0321>. Each operation is implemented as
an interaction that is triggered from the port, orchestrated by the maestro<4002>, and performed by the
members as shown in the sequence diagram of figure 15.

Figure 15: The maestro controls component interaction

The small rectangles on the lifelines represent method activations. We show two of them as comments in
the diagram1; a tool could show a selected method in a separate pane where it could be edited.

The activity computes its earlyStart under the assumption that its predecessors know their earlyFinish
times. It is the maestro’s responsibility to ensure that this invariant is satisfied. The maestro, therefore, sends
the frontload-message to selected activities that are either start activities with no predecessors or activities with
predecessors that have already been frontloaded:

Maestro>>frontload: firstWeek
| frontActs |
activities do: [:act | act resetFrontload]. “ Set earlyStart to nil. “
[(frontActs := activities select:

[:act |
act earlyStart isNil
and: [act predecessors allSatisfy: [:pred | pred earlyStart notNil]]]

) notEmpty]
whileTrue:

[frontActs do: [:act | act frontload: firstWeek]]

1. We here switch to Smalltalk because it is more compact and because it is the basic language of BabyUML.

earlyFinish()

earlyFinish()

frontload (1)

frontload (1)

frontload (1)

activityNetwork-interaction6

frontload (1)

frontload (1)
earlyFinish()

<2200> actA
(2)

<2203> actD
(2)

<2272> actC
(3)

<2261> actB
(7)

<4002> maestro

resetFrontload ()
resetFrontload ()
resetFrontload ()
resetFrontload ()

resetFrontload
self earlyStart: nil.

frontload: start
self earlyStart: start.
self predecessors do:

[:pred |
 self earlyStart: (self earlyStart max: pred earlyFinish + 1)
].
20 07-Maestro.fm BabyUML draft of July 25, 2005 10:40 am

We have now made the member interaction explicit and visible in the maestro code, while the details are
still delegated to the activity parts as illustrated in the sequence diagram in figure 15.
BabyUML draft of July 25, 2005 10:40 am 07-Maestro.fm 21

B.4: The Declarative Component

In sectionB.2 on page17, I partitioned the object space into an hierarchy of encapsulated
components. I also showed how my traditional programming style effectively hid system structure and
behavior inside the individual member objects. In sectionB.3 on page19, I moved responsibility for the
overall interaction from being implicit in the component member objects to becoming explicit in the
maestro. I will now move responsibility for the object structure from being implicit in the member objects
to becoming explicit in the component itself.

Figure 16: UML class diagram

Figure 16 describes the sampleNet activities in a UML class diagram. This diagram can be interpreted as
defining the Activity class; a tool can generate the class definition code such as the Smalltalk definition
given on page 34. This use of the class diagram is powerful, but it also has its limitations. The code does
not exhibit the important information that the predecessor/successor relationship is binary; an activity
shall always be included in the successors of its predecessors. Equally important is that an interested
person can only extract this information by carefully reading the code details. Inspection of a network
instance can give a hint, but there can always be hidden exceptions motivated by special cases or caused
by bugs .

We therefore introduce a new kind of component where the class diagram is interpreted as a
declarative schema for a micro database that contains the component member objects. The diagram will
be part of the component code; a reader can thus trust that this is indeed what is meant by an activity
network in this component. Referential integrity is guaranteed and, as an added benefit, member objects
can be persistent objects stored in a private database local to a component instance.

«schema» Network

example-schema6

Activity
name: string
duration: integer
earlyStart: integer
/earlyFinish : integer

predecessors

successors *

*

22 08-Declarative.fm BabyUML draft of July 25, 2005 10:40 am

i: Storage-Centered: A Micro “Database” Holding the Members of the Component

Figure 17 shows a component descriptor for our sampleNet with the component members stored in a
private database.

Figure 17: Component descriptor for a declarative component.

The component schema can be expressed in any schema language such as SQL, OSQL, [ODMG]/ODL,
[UML]/OCL,... As an example, we express the schema of figure 16 in the Object Definition Language of
[ODMG]. We have simplified the activity objects by representing the structure information in separate
Dependency objects:

class Activity
(extent activities)
{ attribute string name;
attribute short duration;
attribute short earlyStart;
attribute short earlyFinish;

};
class Dependency

(extent dependencies)
{ attribute Activity pred
attribute Activity succ

};

The choice of schema language is not important here because even the schema language can be local
to the component. We expect many programmers will prefer to use their regular OO language; the
essence being to centralize the structure information. We here encode the schema in Smalltalk to keep
our example as simple as possible:

Object subclass: #Base
instanceVariableNames: ‘activities associations’. ..

Object subclass: #Activity
instanceVariableNames: ‘name duration earlyStart’...

Activity>>earlyFinish
^^self earlyStart + self duration - 1.

Object subclass: #Association
instanceVariableNames: ‘pred succ.’

«Component» sampleNet«port»
<0321>

maestro <4002>

«database» <0983>

name = 'actD'
duration = 2
earlyStart = 8

earlyFinish = 9
frontload: firstWeek

<2203> : Activity«schema» Network
Activity

name: string
duration: integer
earlyStart: integer
/earlyFinish : integer

predecessors

successors *

*

example-database4
BabyUML draft of July 25, 2005 10:40 am 08-Declarative.fm 23

ii: Communication-Centered: Maestro-controlled interaction

We are now ready to realize the component’s provided operations. The idea is to separate the component
into layers, each layer specifying how the component shall implement one or more of the provided
operations as illustrated in figure 18.

Figure 18: Layered component description.

The collaboration defined in [UML] can be adapted to programming the provided operations:

A collaboration describes a structure of collaborating objects (roles), each performing a specialized func-
tion, which collectively accomplish some desired functionality. Its primary purpose is to explain how a
system works and, therefore, it typically only incorporates the relevant aspects of the objects. Thus, details,
such as the identity or class of the actual participating objects are suppressed.

A collaboration specifies a projection (or view) of a set of cooperating members. It describes the required
links between members that play the roles of the collaboration, as well as their features. Several collab-
orations may describe different projections of the same objects.

We can program each provided operation in separate collaboration with its associated roles and
interactions. The frontloading operation is most interesting, and we discuss it here.

Figure 19: Frontloading sequence diagram.

activityDescriptorFor: actName

newActivityNamed: aString duration: anInteger

addDependentFrom: actName1 to: actName2
frontloadFrom: firstWeekNo

activityNames

«Component» sampleNet <0321>

LayeredComponent

example-frontload7

maestro
frontload: firstWeek

frontAct frontPreds

frontload: firstWeek

allActs

resetEarlyStart

frontload: firstWeek
self earlyStart: firstWeek.
self frontPreds do:

[:pred |
self earlyStart: (self earlyStart max: (pred earlyFinish + 1))].

frontContext

activitiesContext

[frontAct notNil]
24 08-Declarative.fm BabyUML draft of July 25, 2005 10:40 am

As with the MasteredComponent, the provided operations are realized by the component maestro object. The
maestro method for frontloading is coded in a sequence diagram in figure 19. The method consists of two
nested fragments called activitiesContext and frontContext.

A fragment is executed in a context, which is a dictionary (namespace) where role names are
dynamically mapped to component members. The name of the context itself is the name of a query to the
database.

The appropriate language mechanisms for mapping role name to member in the code is still under study. The
contexts should probably be on the stack to make them private to the interactions.

We need to perform three steps to realize the frontloading operation. We start by assigning
component member objects to the roles:
• The maestro role is played by a special object within the component.
• The frontAct role is played by an unplanned activity object with planned predecessors.
• The frontPreds role is played by the predecessors of the frontAct.

iii: Mapping roles to members

This mapping can be expressed as database queries, for example in the Object Query Language of
[ODMG]:

activities

is already defined as the extension of Activity.
The role named frontActivity is any one of the this set:

define query frontActivities as
select act
from activities
where act.earlyStart.isNil
and

(select succ
from dependencies
where pred = act
and pred.earlyStart.notNil)

) isEmpty

And the predecessors:
define predecessors (Activity act) as

select pred
from dependencies
where succ = act

In Squeak, we execute the interaction in context:
Base>>inActivitiesContextDo: aBlock

allActivities := activities.
^aBlock value.
BabyUML draft of July 25, 2005 10:40 am 08-Declarative.fm 25

Base>>inFrontContextRepeat: aBlock
| frontActs |

[frontActs := activities select:
[:act |
act earlyStart isNil
and:

[(associations select: [:assoc | assoc succ = act and: [assoc pred earlyStart isNil]]
) isEmpty]

].
frontActs notEmpty

]
whileTrue:
[frontAct := frontActs anyOne.

frontPreds := (self predecessorsOf: frontAct) asArray.
aBlock value

].

iv: Member interaction

We realize the frontloading operation as a maestro method. Figure 19 shows a UML sequence diagram
realizing the operation. The sequence diagram is one of the very powerful graphical languages for
behavior provided by [UML] and the maestro code for frontloading can be compiled directly from this
diagram.

Many programmers may prefer to code it textually. The following code is meant to be equivalent to
the diagram:

Maestro>>frontload: firstWeek
base inActivitiesContextDo:

[self allActivities do: [:act | act resetFrontload]
].

base inFrontContextRepeat:
[self frontAct frontload: firstWeek.
].

v: CPU-Centered programming of the details

We wrote the default details in the context of the interaction in figure 19. This code can be specialized in
different activity classes, but the programmer is severely constrained because the only visible members
are the ones visible in the context. This restricts the code writer’s scope for ingenuity and the code
reader’s scope for confusion.

Activity>>frontload: firstWeek
self earlyStart: firstWeek.
self frontPreds do: [:pred | self earlyStart: (self earlyStart max: (pred earlyFinish + 1))].
26 08-Declarative.fm BabyUML draft of July 25, 2005 10:40 am

Part C: The Classes

C.1: The SimpleClass

We gave an example of a simple object in sectionB.1:The Simple Object(page14) and showed two
projections. The external showed the object as a black box, while the conceptual showed the object with
its features.

i: The black box Object Descriptor

The conceptual, white box object depicted in figure 7 on page 15 would be very inefficient if all the
information were stored in every object because there would be a great deal of duplication. The
implementation actually only stores the attribute values in an instance as shown with bold text on a white
background in the figure. The rest of the information is delegated to its class and superclass objects as
illustrated in figure 20. We coin the term Object Descriptor to denote this realization of an object consisting
of an instance, its class object and the superclass objects.

Figure 20: The Object Descriptor consists of several objects

ii: The object implementation

There are two important kinds of relationships in figure 20; the «instanceOf» and the «subclassOf»
relationships. An object descriptor consists of exactly one «instanceOf» followed by any number of
«subclassOf». The objects of figure 20 are expanded into conceptual objects of the object descriptor in
figure 21.

superclass
«subclassOf»

M1: non-class layer

M2: class layer

simple-descriptor-2

<2232> actD

<0002> Object<0148> Activity

class «instanceOf»
BabyUML draft of July 25, 2005 10:40 am C01-SimpleClass.fm 27

Figure 21: Example object conceptual descriptor

The objects are as follows:
• The instance itself has objectID=<2232> and stores the values ‘actD’, 3, 14, 16, {<1267>. <1125>.}.
• Every object is an instance of a class and has a link to it. Our object is an instance of class Activity,

stored in the <0148>Activity object. This class object has a link to its superclass, <0002>Object. The
superclass of <0002>Object is here nil, thus terminating the superclass chain.

• The names of the object’s attributes are the union of the attributes attributes of the class and all its
superclasses.

• The object’s methods are a union of the methods defined in the methodDict attribute of its class and all
its superclasses.

• Note that the frontload: - method is stored in the class <0148>Activity. The inspect-method is stored in the
class <0002>Object. All of them are visible to the collaborators of the <2232> object as bona fide
operations on that object.

• Also note that the class object <0148> has its own message interface to its own methods. In this
particular implementation, it responds to the message new, telling it to create a new instance of itself.
It also responds to compile: sourceText. The corresponding method is a compiler that translates the
sourceText into a method with its byte codes and installs the method into the methodDict for later execution
by the instances of this class, e.g., <2232>. In BabyUML, there will be compilers that translate various
code projections into executable programs.

Every object is an instance of some class. The class of a class object is called a metaclass. It is a rich
source of confusion that the features of the <2232>actD object is given by the descriptor objects shown in
figure 21, while the features of the <0148>Activity class object is given by a different descriptor. This is
discussed in more detail in sectionD.1:The MetaSimpleclass(page35)

iii: Browsing the Object Descriptor

A person exploring the object space or editing the object methods can do so with the ObjectBrowser
shown in figure 22. The bottom row contains two multi-select lists that are used to filter the views on class/
superclass and interface respectively. The middle row shows the operations with the corresponding
methods, and the top row shows object attributes and their current values.

The browser supports the editing of the class features. Superclasses appear as read only because
it is felt that the programmer should not change the superclasses without seeing the consequences.

superclass = nil

format = ...

methodDict = {inspect ...

attributes= {}

className = #Object

<0002> Object

...= method

... = method

... = method

class «instanceOf»

superclass
«subclassOf»

M0:
non-class layer

superclass= Object
format = ...

methodDict = {frontLoad:...

attributes= {activ ityName...
className = #Activity

<0148> Activity

...=
#compile: =

#new =

method

method
method

M1:
class layer

simple-descriptor-1

predecessors =
earlyFinish =
earlyStart =
duration =
activityName =

<2232> actD

frontload (firstWeek : Integer) =
descriptor : Dictionary =

name : String =

method
method
method

 {<1267>. <1125>.}

 9
 8
 2
 'actD'
28 C01-SimpleClass.fm BabyUML draft of July 25, 2005 10:40 am

Figure 22: An Object Browser IDE accesses the object descriptor

Note: The above screen dump shows an objectID that is different from other actD examples because it was
captured from a different execution of the sampleNet test.
BabyUML draft of July 25, 2005 10:40 am C01-SimpleClass.fm 29

C.2: Component Merge

The merge relationship is an innovative and powerful construct that was introduced in [UML]. An extract
of the original [UML] definition is given in appendix2 on page46 where we see that the original is a
construct for merging model packages. In BabyUML, we explore a similar construct for merging
components as exemplified in figure 23.

Figure 23: The component merge operation.

A component merge is an operation on two components that makes the contents of the two components
appear combined. It is very similar to generalization in the sense that the receiving component
conceptually adds the characteristics of the merged component to its own characteristics resulting in a
conceptual element that combines the characteristics of both.

i: The Object Descriptor described as Merged Components

A BabyUML component is encapsulated and can only be accessed through its provided ports. The
merge operation extends this rule so that a merged component can appear as being an integral part of a
receiving component; the result being a flattened description called the conceptual component.

Figure 23 illustrates how the object descriptor of figure 21 on page 28 can be defined in terms of the
merge operation. We see that the conceptual, white box object in figure 9 on page 15 is the result of two
merge operations. The first flatten the superclass into the class. The second makes the combination
conceptually becoming part of the instance. An intuitive illustration is given in figure 24.

In terms of program semantics, there is no difference between a black box program descriptor with
explicit component merges, and a white box conceptual program where all the merges have been
performed. The black box views of figure 23 and figure 24 are, therefore, semantically identical to the
white box view of figure 9 on page 15.

Figure 24: The merge operator as a one way mirror.

The merge operation is intuitively like a one way mirror between the merged and receiving components:
• The elements of the merged component appear as integral parts of the receiving component.
• The elements of the receiving component are invisible from the merged component.
• Additionally, we may find it useful to require that the state of the merged elements shall not be

changed from the receiving component.

Smalltalk -merge1

superclass
«merge»

instanceclass
«merge»

merged receivingmergedreceiving

Smalltalk-merge2

superclass= Object
format = ...

methodDict = {frontLoad:...

attributes= {activityName...
className = #Activity

<0148> Activity

xxx=
#compile: =

#new =

method

method

method

instance

superclass = nil

format = 2
methodDict = {inspect ...

attributes= {}
className = #Object

<0002> Object

xxx = method

superclass class

merged receivingmergedreceiving

'actD'

{'actB'. 'actC'.}

14

16

 3

 <2203> actD
30 C02-ComponentMerge.fm BabyUML draft of July 25, 2005 10:40 am

The white and black box views are all projections of the same program and the programming environment
continuously synchronize them with the virtual machine by applying the appropriate transformations. In
this example, we have the «superclass» and «instance of» relations, but other relations can be added as
needed. Some examples that will be studied in the future:
• Traits dissociates methods from the classes and define fine grained relations between them.

[Schärli-03] presents traits as a simple compositional model for structuring object-oriented programs.
A trait is essentially a group of pure methods that serves as a building block for classes and is a
primitive unit of code reuse. In this model, classes are composed from a set of traits by specifying
glue code that connects the traits together and accesses the necessary state. Methods defined in
different traits can be merged into a flattened, conceptual trait using the traits glue specifications.

• The OOram role model synthesis [OORAM] is a sophisticated relationship between UML
collaborations where roles in different collaborations are constrained to be played by the same
object. Collaborations can be projections of BabyUML programs; they could be merged through the
synthesis relationship.

ii: The sampleNet Specified as Merged Components

The sampleNet conceptual projection of figure 12 on page 18 can be realized if the NetworkPort and
Activity classes are kept outside the component and accessed through required interfaces. This seems
somewhat cumbersome, and we prefer to keep them inside the component. Figure 25 shows a
conceptual view of the network component with its classes.

Figure 25: Conceptual network component.

In figure 26, we show the merged and receiving components that together make up the conceptual
component in figure 25.

«Component» sampleNet

+newActivity (name : String, duration : Integer)
+addDependency (from, to : String)
+frontload (firstWeek: : Integer)
+activityNames () : String [] {sorted}
+activityDescriptor (name: String) : Dictionary

<0321> port

- activities : Activity[]
name = 'actD'
duration = 2
earlyStart = 8
earlyFinish = 9
predecessors = { actB. 'actC.}
successors { }

frontload (firstWeek : Integer)

<2203> actD

<1234> NetworkPort <0148> Activity

<0002> Object

example-white6
BabyUML draft of July 25, 2005 10:40 am C02-ComponentMerge.fm 31

Figure 26: Merged and receiving network components

The relationships that are implied in figure 26 are shown explicitly in figure 27. We expect that the first
shall be all that is seen by the programmer; the detailed relationships should be managed automatically
by the programming tools.

Figure 27: The individual relationships between the objects of figure 26.

The two last chapters have shown many different ways for viewing a program in a stored program virtual
object computer. They are all illusions, the virtual computer deals with simple objects, classes and
methods. Our programming discipline is an abstraction buildt on top of this; the diagrams are program
source code in our interactive development environment.

example-white-merge6

«merge»

<0148> Activity

<0321> NetworkPort

«Component» Network «Component» sampleNet

<0148> port

<2203> actD
merged receiving

<0002> Object
«merge»

merged receiving

example-white-merge-open6

«instanceOf»
<0148> Activity

<0321> NetworkPort <0148> port
<0002> Object

<2203> actD

«instanceOf»«subclassOf»
32 C02-ComponentMerge.fm BabyUML draft of July 25, 2005 10:40 am

C.3: The Simple Component

i: The Simple Component Descriptor

The SimpleComponent is indeed simple. Figure 28 suggests that the sampleNet descriptor consists of eight
objects:
• Four activity instances holding the attribute values for the four example activities.
• One Activity class object holding some features common to the activity instances.
• One port instance forming the bridge from the environment and the activities. The port receives

messages from the environment and passes them on to the appropriate activity objects. The identity
of the port is the identity of the component as a whole.

• One NetworkPort class holding some of the port features.
• One Object class object holding features common to all instances.

Figure 28: sampleNet Component Descriptor.

The component as a whole does not exist as an object, so we have shown it rectangular and grayed out.
The component is not enforced by the programming environment, but is implemented by programmer
discipline. We will later see more powerful components where the discipline is enforced by a component
object.

ii: Implementation of the network component class

xxxx

example-descriptor5

predecessors =
earlyFinish =
earlyStart =
duration =
activityName =

<2232> actD

frontload (firstWeek: : Integer) =

descriptor : Dictionary =

name : String =

method

method
method

 {<1267>. <1125>.}
 9
 8
 2
'actD'

activities = {actA. actB. actC. actD.}
newActivity (name : String, duration : Integer)
addDependency (from, to : String)
frontload (firstWeek : Integer)
activityNames () : String [] {sorted}
activityDescriptor (name: String) : Dictionary

<1234> NetworkPort <0148> Activity

class «instanceOf»class «instanceOf»

<0002> Object

superclass «subclassOf»

«component» sampleNet

{actA. actB. actC. actD.}

«port» <0321>
BabyUML draft of July 25, 2005 10:40 am C03-SimpleComponent.fm 33

iii: Excerpts of the sampleNet code

I first coded the sampleNet component of figure 12 on page 18 in my usual style, distributing state and
behavior in a structure of interacting activity objects: 1

AbstractActivity subclass: #SimpleActivity
instanceVariableNames: 'predecessors successors counter'

poolDictionaries: ''

The activity frontload operation:
SimpleActivity>>frontload: start

self earlyStart
ifNil: [self counter: 0. self earlyStart: start]
ifNotNil: [self earlyStart: (start max: self earlyStart)].

self counter: self counter+1) >= self predecessors size
ifTrue: [self successors do: [:succ | succ frontload: self earlyFinish + 1]].

Object subclass: #SimpleNetworkPort
instanceVariableNames: 'activities'
poolDictionaries: ''

SimpleNetworkPort>>frontload: firstWeek
activities do: [:act | act resetFrontload].
(activities select: [:act | act predecessors isEmpty])

do: [:act | act frontload: firstWeek]

1. Ie here switch to Smalltalk because it is more compact and because it is the basic language of BabyUML.
34 C03-SimpleComponent.fm BabyUML draft of July 25, 2005 10:40 am

Part D: The Metaclasses

D.1: The MetaSimpleclass

i: The implementation of the Activity class object

Every object is an instance of some class. The class of a class object is called a metaclass. It is a rich
source of confusion that the features of the <2232>actD object is given by the descriptor objects shown in
figure 21 on page 28, while the features of the <0148>Activity class object is given by a different descriptor,
shown in figure 29.

Figure 29: Object Descriptor for the class <148> Activity

Note that the class object, <0148>Activity, responds to its own messages such as new and compile:. The
methods corresponding to these messages are stored in the class of the class, <0148>Metaclass (or actually
its superclass, <2528>Behavior). The metaclass is not part of the <2232>actD descriptor in
figure 21 on page 28 since it in no way influences this object’s features.

The toolmaker challenge is to exploit the power of flexible instantiation without confusing the
programmer.

ii: The instantiation and inheritance relationships

Two additional projections of of example object are of interest. Figure 29 shows the instantiation
architecture of our example object. This architecture is an essential part of the <2232>actD semantics.

superclass = nil
format = 2

methodDict = {inspect ...

attributes= {}
className = #Object

<0002> Object

...= method
... = method

... = method

class «instanceOf»

superclass= <0002>
format = ...

methodDict = {frontLoad:...

attributes= {activityName...

className = #Activity

<0148> Activity

...=
#compile: =

#new =

method

method

method

M2: class layer

simple-descriptor-class-1

superclass

«subclassOf»

superclass= <2528>
format = ...

methodDict = { }

attributes= {activityName...

className = #Activity

<0148> MetaSimpleclass

...=
#compile: =

#new =

method

method

method

M3: metaclass layer

superclass= <0002>
format = ...

methodDict = {new:, compile:,...

attributes= {activityName...
className = #Activity

<2528> Behavior

...=
#compile: =

#new =

method

method
method

superclass
«subclassOf»
BabyUML draft of July 25, 2005 10:40 am D01-Metaclass.fm 35

Figure 30: The example instantiation architecture

Common languages such as Java have a single, buildt-in metaclass. We could have made BabyUML
equally constrained by letting <101>MetaSimpleclass be an instance of itself, thus terminating the
instantiation chain. We want BabyUML to be extensible with different kinds of classes and different IDEs.
We therefore added an additional layer, the <942>MetaMetaclass layer. BabyUML can thus be extended by
the addition of new metaclasses. Tool writers can leverage this power to create new concepts.

Class inheritance is a very powerful device for code reuse and code sharing. Figure 31 shows the
inheritance structure initially chosen for the current example. We see that it bears no relationship to the
instantiation structure of figure 30. The inheritance structure can be refactored without changing the
system semantics. This particular solution is, therefore, relatively unimportant.

Figure 31: The example class inheritance structure.

The human mind is well equipped for understanding a tree structure, but it usually finds it harder to handle
two of them simultaneously. BabyUML gains its power and extensibility from its four layered instantiation
architecture, but application programmers should still only see the familiar class inheritance. The
toolmaker exploits the power of metaclasses to give the programmer leverage through tools such as the
object browser of figure 22 on page 29.

<942>MetaMetaclass

<0148>Activity

<101>MetaSimpleclass

«instance of»

«instance of»

<2232>actD

M4

M3

M2

M1

«instance of»

<2528>Behavior

<0002>Object

Instantiation9.sdr

<942>MetaMetaclass

<148>Activity

<101>MetaSimpleclass

<2528>Behavior

<0002>Object

Inheritance8
36 D01-Metaclass.fm BabyUML draft of July 25, 2005 10:40 am

D.2: The MetaSimpleComponent

xxxxxxxxxx

D.3: The MetaMasteredComponent

D.4: The MetaDeclarativeComponent
BabyUML draft of July 25, 2005 10:40 am D01-Metaclass.fm 37

Part E: Windup

E.1: Conclusion

So, what’s new? What’s new is that we refuse to deal with systems that are beyond human
comprehension. What’s old is the recognition that we cannot test quality into a product, the only solution
is to insist that our systems shall be “so simple that there are obviously no deficiencies”. The purpose of
testing is to confirm that we have done a solid job or, in rare cases, to warn us that we need to start afresh.

Our main proposal is that we shift our focus from individual objects and classes to the notion of
collaborating objects. We suggest that objects be clustered into hierarchical components where each
component encapsulates state and behavior, where each component is sufficiently simple to be
comprehensible, and where the surface area between components is explicit and under full programmer
control. (Illustrated in figure 32).

We have also adapted the UML merge relationship so that we can deal with conceptual objects that
have identity and where the class hierarchy appear flattened into the object itself.

Figure 32: Hierarchical components for comprehensible systems.

We have exemplified our ideas with three kinds of components; other kinds can be added as needed. The
SimpleComponent is applicable for components with few member objects and with simple interactions.
The MasteredComponent permits more complex interaction patterns because the interaction code is lifted
out of the members and made explicit in a maestro object. Finally, the DeclarativeComponent permits
even more complexity because the member objects are managed by a “database” that is local to the
component instance. This solution ensures referential integrity, supports persistent objects if needed, and
enforces disciplined member objects.

There is a neat kind of completeness in the declarative component. Storage-centered: inside the
component, its member objects are stored in a private micro database. Communication-centered: the
members interact in an orderly manner to achieve a required result. CPU-centered: members execute
methods according to their nature. The whole arrangement is recursive; a member may, on closer study,
turn out to be an inner component with its own, local database, etc.

I am implementing BabyUML, a laboratory for experimenting with the new discipline of programming.
BabyUML is a stored program object computer; programs exist as class and other objects that exist

as regular objects within components.
BabyUML supports two mechanisms for reuse. The first is that components can be wired together

by linking their ports. The second is by merging components, making the contents of a merged component
effectively becoming an integral part of a receiving component. Subclassing and instantiation are object
relationships that are supported by the component merge.

HierarchicalComponents
38 E01-Conclusion.fm BabyUML draft of July 25, 2005 10:40 am

BabyUML implements a new metaclass architecture. It is described in ???sectionA.3: Introduction to
BabyUML (page10)???. It shows how object instantiation differs from class inheritance and how
BabyUML can be extended by adding new metaclasses. It also shows that each metaclass can have its
own interactive development environment, making BabyUML a truly multi-language discipline. (The
components discussed in this paper will all be implemented as metaclasses in the BabyUML core).

We stated a number of success criteria in the introduction. We now revisit those criteria and discuss
if and how they are met by the BabyUML programming discipline.
1. Master complexity. Software shall be transparent so that it can be mastered by the human brain.

- BabyUML applies a strategy of divide and conquer to ensure that the brain only has to consider a
limited number of entities at the same time. Issues will be localized and a reader of the code is
protected against many subtle surprises. (Clumsy code can be written in any language, but
BabyUML makes it easier to write good, readable code.)

2. Global. The programming discipline should scale, possibly by being recursive. It should be applicable at all
levels from global architecture to local detail.

- The notion of a component is recursive and applies to all levels from the global to the innermost
local.

3. Safe and secure. Safety and security issues are getting increasingly important. Protection support must be an
essential concern throughout the programming discipline.

- Safety and security has not been discussed here, but the component seems a natural unit for
enclosure within a firewall. Safety and security must be the primary topic during the
implementation of a production version of BabyUML.

4. Controlled program evolution. Requirements, design and code will evolve throughout the program lifetime.
The discipline shall help maintain consistency between all three throughout the system life cycle.

- BabyUML is a stored program object computer. Program and data objects are all first class citizens
in the object space, and methodologies can equally support the updating of programs and data.

5. Support software reuse and interchange. The discipline shall support the definition of software units that can
be adapted for reuse in a variety of different contexts.

- The component is an encapsulated unit of objects with well-defined access points. The
DeclarativeComponent supports persistent objects and the sharing of component information through
a database.

At the time of writing, all these claims express unproven hopes. Only extended experience can
substantiate them.

E.2: Further work

• UML components are characterized by their provided and required interfaces. So far, we have only
considered the provided interfaces and a high priority task is to make required interfaces equally
controlled and visible.

• Metaclasses and tools for the three kinds of components need to be implemented.
• Better tools for inspecting and programming. The component development tools are natural early

component implementations.
• Security and safety. These important topics can only be treated properly when a first version of the

component metaclasses are in place.
• Persistence, integration with database products.
• Optimization. In a private communication, Dave Thomas pointed out that object, components and

other high level constructs need not exist in the running system. The running system can be
optimized and the high level constructs need only exist as illusions created by higher layers of
software.

• Parallel processes could be supported in mastered components with the asynchronous member
interaction.
BabyUML draft of July 25, 2005 10:40 am E01-Conclusion.fm 39

References

[Blue book] Goldberg and Robson: Smalltalk-80. The language and implementation.
Addison-Wesley 1983. ISBN 0-201-11371-6

[Dijkstra] Edsger Dijkstra: A Discipline of Programming, 1976

[DOI] The Digital Object Identifier System. The International DOI Foundation
http://www.doi.org OR UUID?????

[ECOOP-04] Trygve Reenskaug: Empowering People with BabyUML: A sixth Generation
Programming Language. Opening talk, ECOOP 2004, Oslo.
http://heim.ifi.uio.no/~trygver/2004/ECOOP-04/EcoopHandout.pdf

[Eng62] Douglas C. Engelbart: Augmenting Human Intellect: A Conceptual
Framework. Summary Report AFOSR-3223 under Contract AF 49(638)-
1024, SRI Project 3578 for Air Force Office of Scientific Research, Stanford
Research Institute, Menlo Park, Ca., October 1962:

[GOF] Gamma et.al.: Design Patterns. Addison Wesley1995

[Hay-03] David Hay: What Exactly IS a Data Model? DM Review Magazine, February
2003 Issue

[Hy-60] T. Hysing: On the Use of Numerical Methods in the Design and Manufacture
of Ships. Proceedings of the First International Congress of the International
Federation of Automatic Control. Moscow, 1960. Butterworths, London.

[Norman88] Donald A. Norman: The Design of Everyday Things. Doubleday, 1988

[ODMG] Cattell, Barry: The Object Data Standard: ODMG 3.0. Academic Press,
London, 2000. ISBN 1-55860-647-4

[OORAM] Trygve Reenskaug: Working with objects. The OOram Software Engineering
Method. Manning/Prentice Hall 1996. ISBN 0-13-452930-8.
Out of print. Late draft may be downloaded here .PDF
also
Trygve Reenskaug et.al.: OORASS: Seamless Support for the Creation and
Maintenance of Object-Oriented Systems. JOOP 27-41 (October 1992)

[Pawson04] Richard Pawson: Naked Objects. PhD thesis, Trinity College, Dublin, 2004.

[Ree-73] Trygve Reenskaug: Administrative control in the shipyard. ICCAS
conference, Tokyo, 1973. Scanned by the author July 2003 to
http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf
40 E02-references.fm BabyUML draft of July 25, 2005 10:47 am

http://www.doi.org
http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf
http://heim.ifi.uio.no/~trygver/2004/ECOOP-04/EcoopHandout.pdf
http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects.pdf
http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects.pdf
http://www.dmreview.com/toc.cfm?issueid=350
http://www.dmreview.com/toc.cfm?issueid=350

[Baby] Kulwinder S. Gill: The Manchester Small Scale Experimental Machine-"The Baby"
http://www.computer50.org/mark1/new.baby.htm

[Facit] Facit EDB 3 computer and ECM 64 carousell. Some documents are archived at The
Norwegian Museum of Science and Technology, Autokon archive, Box #1.

[HyRee-63]Thomas Hysing, Trygve Reenskaug: A system for computer plate preparation. Numerical
methods applied to shipbuilding. A NATO Advanced Study Institute organized by Central
Institute for Industrial Research and Det norske Veritas. Oslo-Bergen 1963. pp.324ff
A copy of the proceedings is archived at The Norwegian Museum of Science and Technology,
Autokon archive, Box #2.

About the author

 Trygve Reenskaug, prof.em.,
Department of informatics,
University of Oslo, Norway.

mailto: trygver <at> ifi.uio.no
http://heim.ifi.uio.no/~trygver

[Schärli-03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz and Andrew Black,
Traits: Composable Units of Behavior, Proceedings ECOOP 2003 (European
Conference on Object-Oriented Programming), LNCS, vol. 2743, Springer
Verlag, July 2003, pp. 248—274.

[UML] Unified Modeling Language: Superstructure. Version 2.0.

Object Management Group. http://www.omg.org

[Web Services] Web Services Architecture http://www.w3.org/TR/ws-arch/

[Kay77] Kay, Alan, Microelectronics and the Personal Computer, Scientific
American, September 1977, p. 244.
BabyUML draft of July 25, 2005 10:47 am E02-references.fm 41

http://www.w3.org/TR/ws-arch/
http://www.omg.org/

Appendix 1: The Declarative Component implementation

Declarative components are implemented according to the three schema architecture as illustrated in
[Hay-03]. We interpret this architecture as follows:
• The conceptual schema defines the component universe of discourse with all its legal members and

structures.
• The external schemas define the collaboration roles, i.e., the objects that realize the component’s

provided operations. Their external mappings bind them to the conceptual schema by suitable views
(queries).

• The internal schema describes how the schema is implemented in the component.

Figure 33: Three Schema Architecture (from [Hay-03])

We will now describe the sampleNet implementation as a declarative component.
The conceptual schema is given in figure 16 on page 22. Internally, the schema is implemented by

two classes as shown in figure 34. We see that we have separated structure information from the activity
attributes. This guarantees structural integrity and prevents smart tricks at the local activity level.
42 E11-DeclarativeComponentCode.fm BabyUML draft of July 25, 2005 10:40 am

Figure 34: The internal schema.

The class definitions could be generated from the above class diagrams:
Object subclass: #DeclarativeAssociation

instanceVariableNames: 'pred succ'.
Object subclass: #DeclarativeMember

instanceVariableNames: ''.

The attributes of the DeclarativeMember class are all variables in the current context. They are shown as
being derived, i.e., computed. (In this first experiment, the context variables are kept in a pool variable, but this
will be different in future versions.)

DeclarativeMember subclass: #DeclarativeBase
instanceVariableNames: 'activities associations'

and the “real stuff”:
DeclarativeMember subclass: #DeclarativeActivity

instanceVariableNames: 'name duration earlyStart'

In addition, we need to define the maestro:
DeclarativeMember subclass: #DeclarativeMaestro

instanceVariableNames: 'base'

i: activityNamed: aString duration: anInteger

The creation of a new activity is done by a data definition call on the database:
DeclarativeBase>>addAssociationFrom: predNam to: succNam

(associations
detect:

[:assoc | assoc pred name = predNam
and: [assoc succ name = succNam]]

ifNone: [nil])
ifNil:

[associations add:
(DeclarativeAssociation new initialize

pred: (self activityNamed: predNam)

DeclarativeMember

/allActivities
/descrAct
/descrPreds
/descrSuccs
/frontAct
/frontPreds
/maestro

DeclarativeAssociation
pred
succ

base-1

DeclarativeBase
activities
associations

Object

DeclarativeActivity
name
duration
earlyStart
/earlyFinish
BabyUML draft of July 25, 2005 10:40 amE11-DeclarativeComponentCode.fm 43

succ: (self activityNamed: succNam)
)]

This is called from the maestro:
DeclarativeMaestro>>newActivity: actNam duration: dur

base insertIntoActivities: #(#name #duration) values: {actNam. dur.}

ii: addDependentFrom: actName1 to: actName2

This is also a data definition operation on the database:
DeclarativeBase>>addAssociationFrom: predNam to: succNam

(associations detect: [:assoc | assoc pred name = predNam and: [assoc succ name = succNam]] ifNone: [nil])
ifNil:

[associations add:
(DeclarativeAssociation new initialize

pred: (self activityNamed: predNam)
succ: (self activityNamed: succNam)

)]

This is called from the maestro:
DeclarativeMaestro>>addDependencyFrom: predNam to: succNam

base addAssociationFrom: predNam to: succNam

iii: frontload: firstWeek

The sequence diagram of figure 19 on page 24 defines the maestro method. The external mapping
remains to map roles to component members.

DeclarativeBase>>inActivitiesContextDo: aBlock
self allActivities: activities.

* ^aBlock value.

and the main action:
DeclarativeBase>>inFrontContextRepeat: aBlock

| frontActs |
[frontActs := activities select:

[:act |
act earlyStart isNil

and:
[(associations select: [:assoc | assoc succ = act and: [assoc pred earlyStart isNil]
]) isEmpty]

].
frontActs notEmpty
]

whileTrue:
[self frontAct: frontActs anyOne.
self frontPreds: (self predecessorsOf: frontAct) asArray.
aBlock value].

The current bindings of frontAct and frontPeds is now known throughout the conext and can be referenced
as derived attributes in the code:

DeclarativeMaestro>>frontload: firstWeek
base inActivitiesContextDo:

[self allActivities do: [:act | act resetFrontload]
].

base inFrontContextRepeat:
[self frontAct frontload: firstWeek.
].
44 E11-DeclarativeComponentCode.fm BabyUML draft of July 25, 2005 10:40 am

Note the moving context; base inFrontContextRepeat: creates different bindings according to the current state
of the activities.

The code in the activity objects is correspondingly simple:
DeclarativeActivity>>resetFrontload

self earlyStart: nil.

and:
DeclarativeActivity>>frontload: firstWeek

self earlyStart: firstWeek.
self frontPreds do: [:pred | self earlyStart: (self earlyStart max: (pred earlyFinish + 1))].

iv: activityNames

This is implemented as a simple database query:
DeclarativeMaestro>>activityNamesSorted

^base activityNamesSorted
DeclarativeBase>>activityNamesSorted

^(activities collect: [:act | act name]) asSortedCollection asArray

v: activityDescriptorFor: actName

Figure 35: Create the activity descriptor.

DeclarativeMaestro>>activityDescriptorFor: actNam
base inContextForActivityDescriptor: actNam do:

[^ self descrAct activityDescriptor].
DeclarativeActivity>>activityDescriptor

| dict |
dict := Dictionary new.
dict at: 'name' put: self name.
dict at: 'duration' put: self duration.
dict at: 'earlyStart' put: self earlyStart.
dict at: 'successors' put: (self descrSuccs collect: [:nod | nod name]) asArray.
dict at: 'predecessors' put: (self descrPreds collect: [:nod | nod name]) asArray.
^dict

activity-descriptor7

maestro
activityDescriptorFor: actName

activityDescriptor

activitiesContext:
actName descrPreds descrAct descrSuccs

activityDescriptor
| dict |
dict := Dictionary new.
dict at: 'name' put: self name.
...
dict at: 'successors' put: (descrSuccs collect: [:nod | nod name]) asArray.
dict at: 'predecessors' put: (descrPreds collect: [:nod | nod name]) asArray.
d̂ict
BabyUML draft of July 25, 2005 10:40 amE11-DeclarativeComponentCode.fm 45

Appendix 2: Component Merge

The following is an extract from [UML]:
7.3.40 PackageMerge (from Kernel)
A package merge defines how the contents of one package are extended by the contents of another package.
Description
A package merge is a directed relationship between two packages, that indicates that the contents of the two
packages are to be combined. It is very similar to Generalization in the sense that the source element
conceptually adds the characteristics of the target element to its own characteristics resulting in an element that
combines the characteristics of both.
This mechanism should be used when elements defined in different packages have the same name and are
intended to represent the same concept. Most often it is used to provide different definitions of a given concept
for different purposes, starting from a common base definition. A given base concept is extended in increments,
with each increment defined in a separate merged package. By selecting which increments to merge, it is
possible to obtain a custom definition of a concept for a specific end. Package merge is particularly useful in
meta-modeling and is extensively used in the definition of the UML metamodel.
Conceptually, a package merge can be viewed as an operation that takes the contents of two packages and
produces a new package that combines the contents of the packages involved in the merge. In terms of model
semantics, there is no difference between a model with explicit package merges, and a model in which all the
merges have been performed.
Associations
• mergedPackage: Package [1] References the Package that is to be merged with the receiving package of the

Package-Merge. Subsets DirectedRelationship::target.
• receivingPackage: Package [1] References the Package that is being extended with the contents of the

merged package of the PackageMerge. Subsets Element::owner and DirectedRelationship::source.
Semantics
A package merge between two packages implies a set of transformations, whereby the contents of the package
to be merged are combined with the contents of the receiving package. In cases in which certain elements in the
two packages represent the same entity, their contents are (conceptually) merged into a single resulting element
according to the formal rules of package merge specified below.
As with Generalization, a package merge between two packages in a model merely implies these
transformations, but the results are not themselves included in the model. Nevertheless, the receiving package
and its contents are deemed to represent the result of the merge, in the same way that a subclass of a class
represents the aggregation of features of all of its superclasses (and not merely the increment added by the class).
Thus, within a model, any reference to a model element contained in the receiving package implies a reference
to the results of the merge rather than to the increment that is physically contained in that package. This is
illustrated by the example in figure 36 in which package P1 and package P2 both define different increments of
the same class A (identified as P1::A and P2::A respectively). Package P2 merges the contents of package P1,
which implies the merging of increment P1::A into increment P2::A. Package P3 imports the contents of P2 so
that it can define a subclass of A called SubA. In this case, element A in package P3 (P3::A) represents the result
of the merge of P1::A into P2::A and not just the increment P2::A. Note that, if another package were to import
P1, then a reference to A in the importing package would represent the increment P1::A rather than the A
resulting from merge.

Figure 36: Illustration of the meaning of package merge (UML figure 63)
46 E12-UML-merge.fm BabyUML draft of July 25, 2005 10:40 am

To understand the rules of package merge, it is necessary to clearly distinguish between three distinct entities:
the merged increment (e.g., P1::A in figure 36), the receiving increment (e.g., P2::A), and the result of the merge
transformations. The main difficulty comes from the fact that the receiving package and its contents represents
both the operand and the results of the package merge, depending on the context in which they are considered.
For example, in figure 36 , with respect to the package merge operation, P2 represents the increment that is an
operand for the merge. However, with respect to the import operation, P2 represents the result of the merge. This
dual interpretation of the same model element can be confusing, so it is useful to introduce the following
terminology that aids understanding:
• merged package - the first operand of the merge, that is, the package that is to be merged into the receiving

package (this is the package that is the target of the merge arrow in the diagrams).
• receiving package - the second operand of the merge, that is, the package that, conceptually, contains the

results of the merge (and which is the source of the merge arrow in the diagrams). However, this term is used
to refer to the package and its contents before the merge transformations have been performed.

• resulting package - the package that, conceptually, contains the results of the merge. In the model, this is,
of course, the same package as the receiving package, but this particular term is used to refer to the package
and its contents after the merge has been performed.

• merged element - refers to a model element that exists in the merged package.
• receiving element - is a model element in the receiving package. If the element has a matching merged

element, the two are combined to produce the resulting element (see below). This term is used to refer to
the element before the merge has been performed (i.e., the increment itself rather than the result).

• resulting element - is a model element in the resulting package after the merge was performed. For receiving
elements that have a matching merged element, this is the same element as the receiving element, but in the
state after the merge was performed. For merged elements that have no matching receiving element, this is
the merged element. For receiving elements that have no matching merged element, this is the same as the
receiving element.

• element type - refers to the type of any kind of TypedElement, such as the type of a Parameter or
StructuralFeature

• element metatype - is the MOF type of a model element (e.g., Classifier, Association, Feature).
This terminology is based on a conceptual view of package merge that is represented by the schematic diagram
in figure 37 (NB: this is not a UML diagram). The owned elements of packages A and B are all incorporated
into the namespace of package B. However, it is important to emphasize that this view is merely a convenience
for describing the semantics of package merge and is not reflected in the repository model, that is, the physical
model itself is not transformed in any way by the presence of package merges.

Figure 37: Conceptual view of the package merge semantics (UML figure 64)
BabyUML draft of July 25, 2005 10:40 am E12-UML-merge.fm 47

	i: Abstract :
	Part A: Introduction
	A.1: Preface
	i: The New Nature of Programming
	ii: The Need for a New Generation
	iii: Acknowledgements
	iv: Outline

	A.2: Three Generations of System Architectures
	i: CPU-Centered Architecture
	ii: Storage-Centered Architecture
	iii: Communication-Centered Architectures

	A.3: Introduction to BabyUML
	i: The BabyUML Stored Program Object Computer
	ii: The BabyUML Laboratory is Embedded in Squeak
	iii: BabyUML Layered Architecture

	Part B: Example Objects
	B.1: The Simple Object
	i: The Encapsulated Projection
	ii: The Conceptual Projection

	B.2: The Simple Component
	i: A Component Encapsulates Objects
	ii: Encapsulated Projection of a Simple Component
	iii: A Conceptual Projection of the Example Component

	B.3: The Mastered Component
	B.4: The Declarative Component
	i: Storage-Centered: A Micro “Database” Holding the Members of the Component
	ii: Communication-Centered: Maestro-controlled interaction
	iii: Mapping roles to members
	iv: Member interaction
	v: CPU-Centered programming of the details

	Part C: The Classes
	C.1: The SimpleClass
	i: The black box Object Descriptor
	ii: The object implementation
	iii: Browsing the Object Descriptor

	C.2: Component Merge
	i: The Object Descriptor described as Merged Components
	ii: The sampleNet Specified as Merged Components

	C.3: The Simple Component
	i: The Simple Component Descriptor
	ii: Implementation of the network component class
	iii: Excerpts of the sampleNet code

	Part D: The Metaclasses
	D.1: The MetaSimpleclass
	i: The implementation of the Activity class object
	ii: The instantiation and inheritance relationships

	D.2: The MetaSimpleComponent
	D.3: The MetaMasteredComponent
	D.4: The MetaDeclarativeComponent

	Part E: Windup
	E.1: Conclusion
	E.2: Further work

	References
	Appendix 1: The Declarative Component implementation
	i: activityNamed: aString duration: anInteger
	ii: addDependentFrom: actName1 to: actName2
	iii: frontload: firstWeek
	iv: activityNames
	v: activityDescriptorFor: actName

	Appendix 2: Component Merge

