The Islands Implementation
Reverse Engineering

with an evaluation of its

suitability as a BabyUML Foundation

Trygve Reenskaug, Department of Informatics, University of Oslo
trygver<at>ifi.uio.no
http://heim.ifi.uio.no/~trygver

Abstract

This article reports a reverse engineering study if the Islands implementation. It focuses on the object
structure of a simple island in its environment and the process of creating a new island with two member
objects. The result was a surprise to me and might be of interest to serious users and implementors of
Islands and Tweak packages.

Superficially, the Islands implementation seems to realize concepts that are similar to the BabyUML
Component. The purpose of this study was to establish if a BabyUML implementation should be based on
Islands. The regrettable conclusion was negative; the details of the Islands implementation were at odds
with the architecture of the BabyUML component.
| want increased confidencein my programs. | want my own and other people's programsto be more read-
able. | want anew discipline of programming that augments my thought processes. | create and explore a
new disciplinein my BabyUML project. | select, simplify and twist UML and other constructs to demon-
strate how they help bridge the gap between me as a programmer and the objects running in my computer
Thekey istolet my code explicitly specify three important aspects of my programs. What are the objects,
how arethey linked, and how do they collaborateto realize their goals. Thefocusison the run timeobjects,
the classes that specify them is moved towards the background.

| gave an overview of three promising coding constructsin an earlier article. A fundamental
BabyUML ideaisto divide the objects space into an hierarchical structure of components. A BabyUML
component looks like a single object when seen from the outside and is characterized by its provided and
required interfaces. Inside, the component contains a system of interacting member objects that collec-
tively implement the provided interfaces and use the required ones.

A Sgueak construct called Idlands |ooks very promising as a foundation for the BabyUML Compo-
nent:

Aniglandisa unit of isolation for sets of interacting objects. Any object lives on precisely oneisland and
never "leaves" itsisland. Put differently, no two objects on different islands can refer to each other directly.
Instead, objects on different islands refer to each other via so-called "far references' (FarRef) which are
well-known objects controlling and relaying the incoming messages to its designated receiver on the cor-
rect island.

| will first reverse engineer asimple Ilands example in order to better understand its fundamental mech-
anisms. | will then consider if and how these mechanisms can be support the BabyUML component.

1. Reenskaug: Towards A New Discipline of Programming. Oslo, 2005-09-16.
http://heim.ifi.uio.no/~trygver/2005/babyuml/newdiscipline.pdf

2. ???: ldands.
http://tweak.impara.de/TECHNOLOGY/Whitepapers/Islands/

BabyUML draft of September 20, 2005 5:15 pm tweakComponents.fm 1

http://heim.ifi.uio.no/~trygver/2005/babyuml/newdiscipline.pdf
http://heim.ifi.uio.no/~trygver/2005/babyuml/newdiscipline.pdf
http://tweak.impara.de/TECHNOLOGY/Whitepapers/Islands/
http://heim.ifi.uio.no/~trygver

THE ISLANDS MECHANISM.

Figure 1 shows a smple examplewith two islands. Thefirst island is Squeak, it has one interesting object,
client, an instance of IslandClient. The second island is Serverisland. It contains two objects, server and inner,
instances of the IslandServer and Islandinner classes respectively.

Figure 1: A simple example with two islands.

«island»
Serverlsland

«island»

Squeak

server IsIandServer]

[client : IslandClient <

inner

inner : IsIandInnerJ

Access to the objects within the Serverisland shall be protected by the FarRref objects marked as small, red
circlesinfigure 1.

Example code

Figure 2: The example is coded in three classes. :
Object subclass: #lslandClient

instanceVariableNames: 'serverlsland Object subclass: #lslandServer
serverObject innerObject’ instanceVariableNames: 'inner'
IslandClient>>test IslandServer>>initialize
serverlsland := Island named: 'serverlsland'. super initialize.
serverObject := serverlsland new: IslandServer. inner := IslandServerinner new.
innerObject := serverObject runServer. IslandServer>>runServer
self inspect. Ainner

Object subclass: #lslandServerinner
instanceVariableNames: "

Figure 2 shows the example code. (A large number of trace statements have been omitted). | run
IslandClient new test and get an ingpector on the client object. The inspector is shown in figure 3.

Figure 3: The inspector opened by running IslandClient>>test.

IslandClient

self #1:1126an IslandServerlnner

all ifst vars A A
zerverlzland

zerverObiject

innierObject ¥ ¥
innierObject printStringLlimitedTo: S000="<1126:an [zlandierverlnner’ 5
innerObject printString="Far serverlzland:[[1126]an IzlandServerlnner] =
innerObject izland=Far zerverlzland:[«2494:an Izlandizerverlzland}]
iinnerOtject inatVardt 2)=izland «<2275an [zland(Squeal) v

2 tweakComponents.fm BabyUML draft of September 20, 2005 5:15 pm

The above inspector on the client object is an illusion because it shows the innerObject as being an
IslandServerinner instance with oop=1126. The FarRef Object isinvisible because it is transparent to almost
all messages.

A closer study of the Inspector code explains this phenomenon. The Inspector uses
printStringLimitedTo: 5000 to present the innerObject value. The FarRef>>doesNotUnderstand: method forwards this
message to the <1126>inner object. In contrast, printon: and thus printString isimplemented in FarRef and is han-
dled there. Thetwofirst printit-statementsin figure 3illustratesthisdifference. (Note: The printon: method
has been modified to show the object’s <oop>.)

| hacked the BabySRE reverse engineering tool to handle this object structure. The essential objects
are shown in figure 4. Thisis as expected and conforms to our goal shown in figure 1.

Note that the isand objects do not know their island; while all FarRef objects do know it.

Figure 4. Essential experiment objects.

<249 zerverlsland | Islsid
_ mv¥alue 4\

<28 | FarRef mylsland
zerverlzland \ |
9 IslandCliont serverObiect ——M 1648 : FarRer myValue —M @209 : Inlsndserver

innerObject) I
"""ﬁ. inner
<1201> ! FarRef frm—— myValue ; W
<1126+ | IslsrrdServerintier

The creation of the serverlsland

| created the serverlsland in IslandClient>>test with the statement serverlsland := Island named: ‘serverlisland’. The
codeis

Island>>named: aString ~self new name: aString.

Thislookslike aperfectly normal instantiation, yet the code does not return an instance of 1sland, but
an instance of FarRef?!?

The secret isin self new. The codeis:
Island class>new
| new ref |
new := self basicNew initialize.
ref := new asFarRef: new.
~ref valueOn: self island

S0 new returns a FarRef to the new instance. The FarRef is transparent to name:, but it is the FarRef that
is returned from the named: method.

The creation of the serverObject

The Idand documentation saysthat | create a new instance as amember of an island by a message to that
island: serverObject := serverlsland new: IslandServer. The result of this statement makes serverObject point indi-
rectly to the new instance through a Farref as shown above. But the code for Island>>new: is misleadingly
smple:
Island>>new: aClass
"Create an instance of aClass"
MaClass new

BabyUML draft of September 20, 2005 5:15 pm tweakComponents.fm 3

Again, we see that server object isreturned; yet | get a FarRef to it. Thetrick isthat while a FarRef is trans-
parent to message sends, it isfar from transparent to the returned values. The code that inserts the FarRef
in front of the returned value is very complex. Figure 7 on page 6 is a Message Sequence Chart showing
asimplified trace of the process. It shows that the <1648>FarRef instance is created in the asFarRef:-method
in the <2494>serverlsland object. The FarRef initially points to nil. It getsits values deep down in exception
blocksin the dictionary-like exports : FarRefMap object. (The relevant method is highlighted red in the chart.)

An island is a boundary

It isworth noting that figure 1 on page 2 ismideading inthat an island isan illusion created by the FarRef
accessors. The objectsthemselves are floating freely and their island property depends on theidand of the
observer. Thetwo last print it statementsin figure 3 on page 2 show that the same object appear to reside
on two different islands simultaneousdly.

The explanation isin this code:
island

"Answer the receiver's island"
Processor activelsland

Thereceiversisland is not a property of the receiver, but on the active process. So the receiver appears to
belong to the island of whoever asks the question. This point is also brought out in the object diagram of
figure 5wherethe serverisland objects believe hey are onthe sgeak idland because they were asked from that
idand.

Figure 5: The the serverisland objects’ answer to self island.

&850 FsrRef P mv¥Value %l 2494 serverlsland ! Iolserd
b=

mylzland

zerverlsland
o~

-

<M Ielandlliest

[zerverDbject S

68D | FarRef myValue % e | Ielgrdferver

innerObject

—— myValue —M 126 Inlandierverinner

<«1201> : Farkef

f=ell izland

v

2T Squeak ; Iclsrnd

ISLANDS AS A FOUNDATION FOR BABYUML COMPONENTS

A BabyUML component is an object that is characterized by its provided and required interfaces and that
hides an internal structure of member objects. It is adapted from the UML component metamodel shown
infigure 6. We see that the member elements are a composite aggregation, i.e., they are deleted if the com-
ponent itself is deleted.

Figure 6: Snippet of the UML 2.0 metamodel.

* .
required
Interface Component (<@ ownedMember. PackageableElement

* provided 0.1 *

4 tweakComponents.fm BabyUML draft of September 20, 2005 5:15 pm

The Idands package appears to be fundamentally different. It is aboundary around a set of free floating
objects; there is no record of the identity of these objects. Indeed, an object can apparently be on severa
islands simultaneousdly.

UML also hasthe concept of Ports that specify distinct interaction points between aclassifier such as
a component and its environment. At afirst glance, the UML Port and the Islands’ FarRef seem similar.
This study has reveled that their semanticsis totally different and that the complexity of the FarRef makes
it unsuitable as a ssimple access point.

CONCLUSION

Superficialy, the Ilands package seemsto realize concepts that are similar to the UML Component. This
study reveals fundamental differences. The FarRef classis too complex to form the superclass of asimple
BabyPort class of access points. The Islands class could possibly be extended to a BabyComponent class, but
the dynamics of the Ilands object creation and component membership with the main logic in the FarRef
is contrary to the idea of a BabyComponent that encapsulates and manages its member objects.

The conclusion is, regrettably, that 1slands should not form the foundation for the BabyUML compo-
nent.

BabyUML draft of September 20, 2005 5:15 pm tweakComponents.fm 5

Figure 7: Instantiation of the server object from outside its island

N
N
|

M o P S —
[1en1es<602z>]: 1e4<819T> [1on1es<60zz>] red<819T> [4enuas<60zz>]: re4<8r91>

[1ames<p0zz>]red4<8Y9T> [Jonias<e0zz>]:red4<8i9T>

puejs|ieAIRS<iyBrZ> PUe[S] Jonas<a0zz> anfeAsrenld

[u]:re4<gr9T> INd Jonies<e0ze> e | _
[u]:fed<gy9T> :JUSSAV]I JonBS<E0ZZ> 18

. u]-red<gyoT> |
[lentes<60zz>]: re4<grotT> -

veu T~ Jones<60zz> Jogledse

JONIBS<60ZZ> _\A_xohn_\ﬂm_wmma

_ _”>v§n_>m_mmman
Egzm%o | MOy

Jodopuswnbaypue|si:

Janes<e0ze> ssed

:0}W0J}

- -V =
.n\ JONIBS<60ZZ>

T ™ sensespuels) mau |
SIUBSLLNB.INYIM :MBUH JPUSSIUAS _

JIOAIBSPURIS| MU
s

dejoy fed :s1odxa | pue|s|enies<i6lz> Sse|D Jonlespue|s| [<veiz>]:"ed<0sg8z>| | welp<ce/>

BabyUML draft of September 20, 2005 5:15 pm

tweakComponents.fm

	The Islands mechanism.
	Example code
	The creation of the serverIsland
	The creation of the serverObject
	An island is a boundary

	Islands as a foundation for BabyUML components
	Conclusion

