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Abstract
This article reports a reverse engineering study if the Islands implementation. It focuses on the object 
structure of a simple island in its environment and the process of creating a new island with two member 
objects. The result was a surprise to me and might be of interest to serious users and implementors of 
Islands and Tweak packages.
Superficially, the Islands implementation seems to realize concepts that are similar to the BabyUML 
Component. The purpose of this study was to establish if a BabyUML implementation should be based on 
Islands. The regrettable conclusion was negative; the details of the Islands implementation were at odds 
with the architecture of the BabyUML component.

I want increased confidence in my programs. I want my own and other people’s programs to be more read-
able. I want a new discipline of programming that augments my thought processes. I create and explore a 
new discipline in my BabyUML project. I select, simplify and twist UML and other constructs to demon-
strate how they help bridge the gap between me as a programmer and the objects running in my computer 
The key is to let my code explicitly specify three important aspects of my programs: What are the objects, 
how are they linked, and how do they collaborate to realize their goals. The focus is on the run time objects; 
the classes that specify them is moved towards the background.

I gave an overview of three promising coding constructs in an earlier article1. A fundamental 
BabyUML idea is to divide the objects space into an hierarchical structure of components. A BabyUML 
component looks like a single object when seen from the outside and is characterized by its provided and 
required interfaces. Inside, the component contains a system of interacting member objects that collec-
tively implement the provided interfaces and use the required ones.

A Squeak construct called Islands looks very promising as a foundation for the BabyUML Compo-
nent:

An island is a unit of isolation for sets of interacting objects. Any object lives on precisely one island and 
never "leaves" its island. Put differently, no two objects on different islands can refer to each other directly. 
Instead, objects on different islands refer to each other via so-called "far references" (FarRef) which are 
well-known objects controlling and relaying the incoming messages to its designated receiver on the cor-
rect island.2

I will first reverse engineer a simple Islands example in order to better understand its fundamental mech-
anisms. I will then consider if and how these mechanisms can be support the BabyUML component.

1. Reenskaug: Towards A New Discipline of Programming. Oslo, 2005-09-16.
http://heim.ifi.uio.no/~trygver/2005/babyuml/newdiscipline.pdf

2. ???: Islands.
http://tweak.impara.de/TECHNOLOGY/Whitepapers/Islands/
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THE ISLANDS MECHANISM.
Figure 1 shows a simple example with two islands. The first island is Squeak, it has one interesting object, 
client, an instance of IslandClient. The second island is ServerIsland. It contains two objects, server and inner, 
instances of the IslandServer and IslandInner classes respectively.

Figure 1: A simple example with two islands.

Access to the objects within the ServerIsland shall be protected by the FarRef objects marked as small, red 
circles in figure 1.

Example code

Figure 2: The example is coded in three classes. :

Figure 2 shows the example code. (A large number of trace statements have been omitted). I run 
IslandClient new test and get an inspector on the client object. The inspector is shown in figure 3. 

Figure 3: The inspector opened by running IslandClient>>test.

«island»

Squeak

client : IslandClient

«island»

ServerIsland

server : IslandServer

inner : IslandInner

inner

serverIsland

innerObject

serverObject

Object subclass: #IslandClient
instanceVariableNames: 'serverIsland 

serverObject innerObject'
...

IslandClient>>test
serverIsland := Island named: 'serverIsland'.
serverObject := serverIsland new: IslandServer.
innerObject := serverObject runServer.
self inspect.

Object subclass: #IslandServer
instanceVariableNames: 'inner'
....

IslandServer>>initialize
super initialize.
inner := IslandServerInner new.

IslandServer>>runServer
^inner

Object subclass: #IslandServerInner
instanceVariableNames: ''
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The above inspector on the client object is an illusion because it shows the innerObject as being an 
IslandServerInner instance with oop=1126. The FarRef object is invisible because it is transparent to almost 
all messages. 

A closer study of the Inspector code explains this phenomenon. The Inspector uses 
printStringLimitedTo: 5000 to present the innerObject value. The FarRef>>doesNotUnderstand: method forwards this 
message to the <1126>inner object. In contrast, printOn: and thus printString is implemented in FarRef and is han-
dled there. The two first print it-statements in figure 3 illustrates this difference. (Note: The printOn: method 
has been modified to show the object’s <oop>.)

I hacked the BabySRE reverse engineering tool to handle this object structure. The essential objects 
are shown in figure 4. This is as expected and conforms to our goal shown in figure 1.

Note that the island objects do not know their island; while all FarRef objects do know it.

Figure 4: Essential experiment objects.

The creation of the serverIsland

I created the serverIsland in IslandClient>>test with the statement serverIsland := Island named: 'serverIsland'. The 
code is 

Island>>named: aString ^self new name: aString. 

This looks like a perfectly normal instantiation, yet the code does not return an instance of Island, but 
an instance of FarRef?!?

The secret is in self new. The code is: 
Island class>new

| new ref |
new := self basicNew initialize.
ref := new asFarRef: new.
^ref valueOn: self island

So new returns a FarRef to the new instance. The FarRef is transparent to name:, but it is the FarRef that 
is returned from the named: method.

The creation of the serverObject

The Island documentation says that I create a new instance as a member of an island by a message to that 
island: serverObject := serverIsland new: IslandServer. The result of this statement makes serverObject point indi-
rectly to the new instance through a FarRef as shown above. But the code for Island>>new: is misleadingly 
simple:

Island>>new: aClass
"Create an instance of aClass"
^aClass new
BabyUML draft of September 20, 2005 5:15 pm tweakComponents.fm 3



Again, we see that server object is returned; yet I get a FarRef to it. The trick is that while a FarRef is trans-
parent to message sends, it is far from transparent to the returned values. The code that inserts the FarRef 
in front of the returned value is very complex. Figure 7 on page 6 is a Message Sequence Chart showing 
a simplified trace of the process. It shows that the <1648>FarRef instance is created in the asFarRef:-method 
in the <2494>serverIsland object. The FarRef initially points to nil. It gets its values deep down in exception 
blocks in the dictionary-like exports : FarRefMap object. (The relevant method is highlighted red in the chart.)

An island is a boundary

It is worth noting that figure 1 on page 2 is misleading in that an island is an illusion created by the FarRef 
accessors. The objects themselves are floating freely and their island property depends on the island of the 
observer. The two last print it statements in figure 3 on page 2 show that the same object appear to reside 
on two different islands simultaneously.

The explanation is in this code:
island

"Answer the receiver's island"
^Processor activeIsland

The receivers island is not a property of the receiver, but on the active process. So the receiver appears to 
belong to the island of whoever asks the question. This point is also brought out in the object diagram of 
figure 5 where the serverIsland objects believe hey are on the Sqeak island because they were asked from that 
island.

Figure 5: The the serverIsland objects’ answer to self island.

ISLANDS AS A FOUNDATION FOR BABYUML COMPONENTS
A BabyUML component is an object that is characterized by its provided and required interfaces and that 
hides an internal structure of member objects. It is adapted from the UML component metamodel shown 
in figure 6. We see that the member elements are a composite aggregation, i.e., they are deleted if the com-
ponent itself is deleted.

Figure 6: Snippet of the UML 2.0 metamodel.

Component PackageableElement
ownedMember

0..1 *
Interface

* required

* provided
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The Islands package appears to be fundamentally different. It is a boundary around a set of free floating 
objects; there is no record of the identity of these objects. Indeed, an object can apparently be on several 
islands simultaneously.

UML also has the concept of Ports that specify distinct interaction points between a classifier such as 
a component and its environment. At a first glance, the UML Port and the Islands’ FarRef seem similar. 
This study has reveled that their semantics is totally different and that the complexity of the FarRef makes 
it unsuitable as a simple access point.

CONCLUSION
Superficially, the Islands package seems to realize concepts that are similar to the UML Component. This 
study reveals fundamental differences. The FarRef class is too complex to form the superclass of a simple 
BabyPort class of access points. The Islands class could possibly be extended to a BabyComponent class, but 
the dynamics of the Islands object creation and component membership with the main logic in the FarRef 
is contrary to the idea of a BabyComponent that encapsulates and manages its member objects.

The conclusion is, regrettably, that Islands should not form the foundation for the BabyUML compo-
nent.
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Figure 7: Instantiation of the server object from outside its island
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