
5/8/2007 11:20 AM 1 of 39 Reenskaug

©2007 Nova Publishers. Posted with permission.
Preprint of chapter in
Computer Software Engineering Research; ISBN: 1-60021-774-5;
Nova Publishers; Hauppauge NY; 3rd Q. 2007

Programming with Roles and Classes:
the BabyUML Approach

Trygve Reenskaug
Dept. of Informatics, University of Oslo

ABSTRACT
The goal of the BabyUML project is to increase
my confidence in my programs. The keywords are
simplicity and leverage. Simplicity helps me to
think clearly and a reader to understand and audit
my code. Leverage lets me say more with less.
The end result shall be a new interactive
development environment with appropriate
languages and tools for supporting high level
abstractions.

The essence of object orientation is that objects
interact to produce some desired result. Yet
current programming languages are focused on
individual objects as they are specified by their
classes; there are no explicit language constructs
for describing communities of interacting objects.
In BabyUML, I will zoom back from the classes
and let my code specify the roles that objects play
in collaborations and interactions.

The BabyUML project is experimental; its ideas
and concepts are explored and their feasibility
demonstrated with actual code and running
programs. One experiment is completed, it
explores an old and a new paradigm for
organizing objects in clear and explicit structures.

The old is MVC, the Model-View-Controller
paradigm that describes the objects bridging the
gap between a human mental model and the
corresponding data stored in the computer. The
new is DCA, the Data-Collaboration-Algorithm
paradigm where the collaborating objects are
explicitly identified by the role they play in an
interaction, and where the interaction pattern is
explicitly defined in terms of these roles.

Another experiment shall lead to BabyIDE, an
integrated development environment that exhibits
a balance between classes and roles. BabyIDE
will be part of a new discipline of programming
where programmers can work consistently at a
high conceptual level throughout coding,
debugging, testing, and maintenance. It will be
implemented in a corner of Smalltalk that I have
called the BabyIDE Laboratory. In the last part of
this chapter, I describe the laboratory and how it
will support new programming paradigms and
tools. I finally indicate the future direction
towards a workable BabyIDE.

5/8/2007 11:20 AM 2 of 39

1 INTRODUCTION

On the 9th September 1945, a moth was found
trapped between the contact points on relay #70,
Panel F, of the Mark II Aiken relay calculator.
The event was entered in the calculator’s log book
as the word’s first recorded computer bug. [1]
This first bug was an “act of God”; most of the
later bugs are blunders of our own making and the
fight against them has been an essential part of
software engineering ever since. The following
quotes from the first NATO Software Engineering
conference [2] could have been uttered today: 1

David and Fraser: Particularly alarming is the
seemingly unavoidable fallibility of large
software, since a malfunction in an advanced
hardware-software system can be a matter of life
and death.

Dijkstra: The dissemination of knowledge is of
obvious value -- the massive dissemination of
error-loaded software is frightening.

The needs of society are still beyond us. An
insatiable software market ever wants more, and
we keep promising more than we can deliver.
Major projects are delayed and even cancelled.
Delivered software is buggy and hard to maintain.
In his 1980 Turing Award lecture, Tony Hoare
succinctly stated our choices [3]:

“There are two ways of constructing a software
design: One way is to make it so simple that
there are obviously no deficiencies and the other
is to make it so complicated that there are no
obvious deficiencies.”2

The other way is the easy way. We get it by
default when we fail to find a simple design. May

1 Quoted with permission from NATO, CBP.
2©ACM 1981. Quoted with permission.

be the time available is unreasonably short. Or
may be our concepts, languages, and tools do not
match the challenges posed by the requirements.
We end up relying on testing to get most of our
blunders out of our systems. But any given test
method can only find a certain percentage of the
all the errors. So keeping the test method fixed,
the more errors we find during testing, the more
errors are probably left in the shipped software.
To quote Dijkstra: 3

"Program testing can be used to show the presence
of bugs, but never to show their absence!" [4]

“One of the reasons why the expression "software
industry" can be so misleading is that a major
analogy with manufacturing fails to hold: in software,
it is often the poor quality of the "product" that make it
so expensive to make! In programming, nothing is
cheaper than not introducing the bugs in the first
place.” [5]

Hoare’s first way is the hard way. It is also the
only way to get quality software, because no
industry has ever been able to work quality into
an inferior product by testing it. I have been
programming for half a century and simplicity has
always been my holy grail. The simple structure is
not only the key to mastery by my brain, but also
the key to a correspondence between user
requirements and system implementation and thus
to habitable systems.

Through the years, requirements have escalated
from the simple computation to distributed
systems with complex data and powerful
algorithms. My brain has remained roughly the
same, so I have had to rely on better tools for

3 Quoted with permission from Hamilton Richards,
Univeristy of Texas.

5/8/2007 11:20 AM 3 of 39 Reenskaug

thinking, designing, coding, and maintenance. My
tools have been ahead of the requirements some
of the time, and I have had the deep satisfaction of
running tests merely to check that I haven’t made
any serious blunders. At other times, requirements
have been ahead of my tools, and I have
shamefully been forced to rely on testing to get
some semblance of quality into my programs.

Requirements have been ahead of my tools for
quite some time now, and Hoare’s other way has
been my way. I started the BabyUML project in
an attempt to remedy this deplorable situation,
hoping once again to experience the pleasure of
following Hoare’s first way. The goal of the
project is to increase my confidence in my
programs. The keywords are simplicity and
leverage. Simplicity helps me to think clearly and
a reader to understand and audit my code.
Leverage lets me say more with less. The end
result shall be a new interactive development
environment with appropriate languages and tools
for supporting high level abstractions.

The essence of object orientation is that objects
interact to produce some desired result. Yet
current programming languages are focused on
individual objects as they are specified by their
classes; there are no explicit language constructs
for describing communities of interacting objects.
In BabyUML, I will zoom back from the classes
and let my code specify the communities with
abstractions taken from OOram role modeling [6]
and the concepts of collaboration and interaction
from the OMG Unified Modeling Language®. [7]

The abstractions need to be represented as
computer programs. I need new tools that bridge
the gap between my brain and those programs. I
want my code to be effectively chunked and self
documenting so that other people can read it and
grasp the system architecture and operation. I
want to be able to write a piece of code and give it
to a colleague so that she can audit it and take
responsibility for its correctness. The BabyUML
success criterion is that programmers shall be

happier and more effective when they use its
results. Programmer happiness is closely coupled
with powerful concepts, responsive environments,
exploration, evolution, and excellence.

The Baby was the world’s first electronic, digital,
stored program computer. It executed its first
statements on the 21st June 1947 at the University
Of Manchester, England. [8] BabyUML is,
somewhat whimsically, named after this computer
because it is based on the idea of a stored
program object computer such as it is pioneered
in Smalltalk. [9] The other part of the name,
UML1, reflects that I see UML as a gold mine of
concepts and ideas that are unified into a fairly
consistent metamodel, many of them applicable to
my project.

Most of my almost 50 years in computer
programming have been devoted to creating tools
for people. My success criteria have been the
happy and effective user rather than the weighty
scientific paper. This chapter is an engineering
status report on the project. Most of the chapter is
about harnessing known principles for the
purposes of the project. Some of the chapter is
about new ideas; the most important are identified
in the conclusion (section 7).

The BabyUML project is experimental because I
need to use a tool in order to understand how to
improve it. The result of the BabyUML series of
experiments shall be a new discipline of
programming that includes abstractions,
processes, and computer tools. One or more new
programming languages may or may not be
required. I expect to find many useful concepts in
UML. I do not commit to applying UML concepts
correctly according to the specification, but will
merely let them inspire my engineering solutions.
One important simplification is that BabyUML is

1 UML is a registered trademark of Object Management
Group, Inc. in the United States and/or other countries.

5/8/2007 11:20 AM 4 of 39 Reenskaug

limited to sequential programming while UML
also caters for parallel processes.

In section 2A, I describe a simple example taken
from activity network planning that will be used
to illustrate the concepts presented in this chapter.
In section 2B, I use this example to illustrate why
my old programming style can fail when scaled
up to large problems.

In section 3, I have selected some fundamental
ideas that have proven their worth in the past and
discuss them from a BabyUML perspective.
Section 3A stresses that BabyUML see the object
as an entity that encapsulates state and behavior; it
can be more than a simple instance of a class.
Section 3B describes the class as a descriptor of
individual objects. Section 3C describes the role
model or collaboration. This is an ensemble of
objects that interact to realize certain
functionality. A role is a link to an object that
makes a specific contribution in a collaboration.
The link is dynamic; it is only valid at a certain
time and in a certain execution of a collaboration.
The BabyUML project shall achieve its goal by
creating BabyIDE, an interactive programming
environment where there is a balance between the
classes that describe what the objects are and the
roles that describe what the objects do when they
interact at runtime.

The chunking of run-time objects is critical to the
mastery of large systems. Section 3D describes a
BabyComponent as a “monster object” that looks
like a regular object in its environment. This
object is completely characterized by its provided
interface and encapsulates member objects that
are invisible from outside. Different components
can structure their member objects according to
different paradigms. Two examples called MVC
and DCA are discussed in depth in later sections.
The notion of a BabyComponent is recursive; its
member objects can turn out to be components in
their own right without this being apparent from
their external properties. The partitioning of the
total system into components is an important
contribution to system simplicity.

Aspect oriented programming is a technology for
capturing cross cutting concerns in code that
spans several classes. In section 3F, I speculate if
similar techniques can be used to write code for
roles so that the code spans all classes
implementing these roles. Finally, in section 3G, I
show that packages are not applicable to the
clustering of run time objects.

I cannot device a new discipline of programming
before I understand what I want to achieve, i.e.
the run-time structure of interacting objects.
BabyUML will provide leverage with a
programming environment that supports an
extensible set of object structuring paradigms.
Section 4 and section 5 describe my old MVC and
my new DCA programming paradigms together
with a demonstration implementation in Java 1, 2 .
Both paradigms answer the essential questions:
What are the objects, How are they interlinked,
and How do they interact. Both are important
stepping stones in my pursuit of the utmost
simplicity. Both paradigms exemplify the kinds of
object structures I envisage for BabyUML. Both
paradigms demonstrate a balance between classes
and roles in the code.

Section 4 describes MVC, my old Model-View-
Controller paradigm [10] that has survived for
more than 30 years. The MVC bridges the gap
between the human brain and the domain data
stored in the computer. Its fundamental quality is
that it separates model from view, i.e., tool from
substance. The ideal Model is pure representation
of information, while the ideal View is pure
presentation:

• The domain data are represented in an
object called the Model.

1 Java is a trademark of Sun Microsystems, Inc. in the
United States and other countries.

2The program is given in full on the enclosed CD.

5/8/2007 11:20 AM 5 of 39 Reenskaug

• The human user observes and manipulates
the data through a View. The view shall
ideally match the human mental model,
giving the user the illusion that what is in
his mind is faithfully represented in the
computer.

• The Controller is responsible for setting up
and coordinating a number of related views.

Section 5 describes DCA, my new Data-
Collaboration-Algorithm paradigm. The essence
of object orientation is that objects collaborate to
realize certain functionality. Many object oriented
designs distribute the specification of the
collaborations as fragmentary information among
the domain objects. In the DCA paradigm, the
collaborating objects are explicitly identified by
the role they play in an interaction, and the
interaction pattern is explicitly defined in terms of
these roles as follows:

• The D for Data part is a simple “micro
database” that manages the domain objects.

• The C for Collaboration part is an object
that defines the roles that objects play in an
ensemble of interacting objects. The
collaboration also binds the roles to objects
by executing queries on the set of Data
objects.

• The A for Algorithm part is a method that
specifies an interaction. The method is
expressed in terms of the roles objects play
in the interaction; the binding from role to
object is done in the collaboration.

The MVC/DCA experiment reported in sections 4
and 5 is completed. It has revealed the kind of
high-level structures that shall be supported by the
BabyUML discipline of programming.

The next major step in the BabyUML project is to
create BabyIDE, an integrated development
environment for BabyUML. The experiment will
be done in a BabyIDE laboratory where I will try
out novel semantics for classes and metaclasses
together with tools for design, compilation, and
inspection.

Section 6 describes a rudimentary BabyIDE
laboratory together with its core concepts. The
laboratory is embedded within a Smalltalk stored
program object computer. Its main feature is that
it gives the systems programmer full control over
the semantics of classes and metaclasses. Its
foundation is a deep understanding of the
implementation of objects, classes, instantiation
and inheritance.

The laboratory will initially be used to create a
BabyIDE for the DCA and MVC paradigms. I
will clearly need to harness imperative,
algorithmic programming as well as the
declarative definition of data structures. I will
need class oriented programming to define the
nature of the objects as well as role models to
define their collaboration. I will also need new
debuggers and inspectors to create an integrated
environment. The prospects are challenging, and I
look forward to dig into them.

The BabyUML project will be completed when it
has produced a BabyIDE working prototype that
can act as a specification for a commercial,
generally applicable software engineering
product. Most products will not need the
flexibility of a laboratory and can be written in
any language.

2 AN EXAMPLE AND A PROBLEM

Fig. 1: The experimental activity network 2A An Activity Network Planning
Example

actD (2, 8-9)
actB (7, 1-7)

actC (3, 3-5)actA (2, 1-2)

Project planning and control is frequently based
on the idea of activity networks. A piece of work
that needs to be done is described as an activity.
The work done by an architect when designing a
house can be broken down into activities. The
work of erecting the house likewise. Example
activities: drawing a plan view, digging the pit,
making the foundation, erecting the frame,
paneling the walls, painting these walls.

Activities may be tied to resources. The creation
of the design of a house requires some hours of
work by an architect and a draftsman. The digging
of the pit requires machinery and the efforts of
some workers. Resource allocation is to reserve
resources for each activity. It is a non-trivial
operation; one can easily end up with unimportant
activities blocking the progress of critical ones.
(We cannot dig the pit because the workers are
busy leveling the garden.) There is a single
resource in this illustrative network example, say
a pool of workers. The resource has unlimited
capacity and an activity employs a single worker
for its duration.

Some of the activity attributes are name, duration,
a set of predecessor activities, a set of successor
activities, earlyStart time, and earlyFinish time.
Predecessors and successors are called
technological dependencies. The earlyStart of an
activity is when all its predecessors are finished.
The earlyFinish is most simply computed as
earlyStart + duration. There are more
sophisticated forms of technological
dependencies. For example, it is possible to start
the painting of one wall before the paneling of all
walls is finished. Such cases are catered for with
various kinds of activity overlap.

The example has been programmed in Java as an
illustration of the concepts discussed in this
chapter1. The user interface (GUI) is shown in
figure 2. It is partitioned into four strips. The top
strip has three command buttons: First Network
that creates the network shown in figure 1.
Frontload the network and allocate resources.
Second Network that creates another network in
order to demonstrate that the program works for
more than one network. The second strip shows
the dependency graph. The third strip is a Gantt
diagram showing when the different activities will
be performed. Time along the horizontal axis,
activities along the vertical. The bottom strip
shows how the activities are allocated to the
resource. Time along the horizontal axis, resource

Frontloading is the calculation of the earlyStart
and earlyFinish times of each activity given the
earlyFinish times for their predecessors. The
example chosen for this experiment is the
rudimentary activity network shown in figure 1.
The activity duration, earlyStart and earlyFinish
times are shown in parenthesis.

1The complete Java code can be found on the enclosed CD.

5/8/2007 11:20 AM 6 of 39 Reenskaug

loading along the vertical. The snapshot in
figure 1 has been taken when actA has been
selected.

5/8/2007 11:20 AM 7 of 39 Reenskaug

Fig. 2: The Java program user interface

The network example could be programmed in
many different ways. I use it to illustrate the MVC
and DCA paradigms, pretending that I’m working
on a non-trivial, comprehensive planning system.

2B My old style doesn’t always
scale

A potential problem with my usual programming
style is easily demonstrated. Figure 3 illustrates
how I would normally implement the network
example. The rounded rectangles denote objects,
the solid lines denote links between them, the
white rectangles denote classes, and the dashed
arrow denotes «instanceOf».

The activity objects are shown bottom right with
heavy outlines. The idea is that planning is
realized by negotiation; internally between the
activity objects themselves and externally
between activity objects and their required
resources. The technicalities of the user interface
have been separated from the domain objects in

conformance with the MVC paradigm; the View
and Controller objects are shown on the left.

My usual implementation style tends to give fairly
small objects in a distributed structure and with
distributed control. This leads to a large number
of links and interaction patterns. An activity uses
a certain resource; let the activity object negotiate
directly with the resource object to establish a
mutually acceptable schedule. A symbol on the
computer screen represents a certain activity; let
the symbol object interrogate the activity object to
determine how it is to be presented, and let the
activity object warn the symbol object of
significant changes. This works fine in simple
cases, but it can degenerate into a bowl of
spaghetti for very large systems.

Fig. 3: A typical application

actDactB

actCactA

Resources

GUI

Activity Network
class

Activity

Every object is an instance of a class written in a
language such as Simula, Java, or Smalltalk. The
structure and domain logic is distributed among
the methods of the classes with their superclasses.
This fragmentation makes it hard to see the
system as a whole. Any spaghetti that may be in
the design will effectively be chopped into
noodles in the classes. The structure is in the mind
of the beholder and not explicit in the code; so my
beauty can be your noodles.

3 SOME FUNDAMENTAL CONCEPTS
AND THEIR USE IN BabyUML

3A The object

The notion of objects was introduced by Nygaard
and Dahl with the Simula language. [11] The
concepts were considerably refined in the
Smalltalk language and run-time system. [9]

5/8/2007 11:20 AM 8 of 39 Reenskaug

Fig. 4: The object

variables

m
es

s

methods

ag
es

instance

Objects are entities that encapsulate state and
behavior. In this chapter, I use Smalltalk’s pure
object model as illustrated in figure 4. The state of
an object is defined by the values of its instance
variables. Its behavior is defined by its methods.
Neither state nor behavior is directly visible from
outside the object; they can only be accessed
through messages to the object. A message is
intention-revealing; it specifies what is required,
but not how this is to be produced1. When an
object receives a message, it looks up a message
dictionary to find the appropriate method for

handling the message. A method can read and
change the value of the instance variables, and it
can send messages to itself or other objects.
Different objects can thus handle identical
messages in different ways.

In some contexts, an object is defined as an
instance of a class. A more conceptual definition
is preferred in BabyUML: An object is an entity
that encapsulates state and behavior. This allows
me to focus on the objects and work with different
abstractions for different purposes. The class
abstraction discussed in section 3B describes the
nature of a set of objects. The role abstraction
discussed in section 3C describes an object’s
contribution made by a set of objects in a
structure of collaborating objects.

The concept of an object is specialized in the
BabyComponent that is introduced in Section 3D.

3B The class

In most object oriented languages, an object is an
instance of a class. The class defines all features
that are common to the instances of the class,
notably their methods and the specification of
their instance variables. Note that the class was
not mentioned in the above description of the
object because it is the object that holds the state
and the methods are executed in the context of the
object.

1This in contrast to a procedure call that uniquely
identifies the procedure body. Also in contrast to
Java where the instance variables are visible from
outside the object.

A class inherits all the features of its superclasses,
it can add features of its own, and it can override
methods defined in the superclasses. A class with
its superclasses can always be flattened into a
single class with no superclass. This means that

5/8/2007 11:20 AM 9 of 39 Reenskaug

the actual distribution of features between the
superclasses does not in any way influence the
semantics of the object, and I see class inheritance
mainly as a very powerful device for code
sharing.

The class concept is important in BabyUML, but
its use is restricted to describing isolated objects.
The state and behavior of ensembles of
collaborating objects are described by the role
models of the next section.

3C The Role Model

Prokon was to be a comprehensive system for
planning and control [12] that we worked on in the
early seventies. The system architecture was
based on objects negotiating on behalf of the line
managers and depended on global control of the
object interaction patterns. The line managers
should own their objects with the corresponding
classes. Objects playing the same roles in the
interactions could, therefore, be implemented by
different classes owned by different managers.
We tried implementing the system in Simula [11],
but failed because the Simula language insisted on
our knowing the class of every object. Indeed,
there was no notion of an object with an unknown
class.

The Prokon project lost its funding and died, but
the vision has stayed with me. The transition to
Smalltalk was a major step forward because the
Smalltalk dynamic typing let me focus on object
interaction independently of classes and class
hierarchy. The MVC paradigm discussed in
section 4 was a result of thinking in terms of
objects rather than classes, but there was still no
construct for explicitly programming the
interaction patterns.

The experience with MVC led me to search for a
new abstraction that let me work explicitly with
the interactions. The result was role modeling, an

abstraction that describes how an ensemble of
objects interact to accomplish some desired result.
Each object has a specific responsibility in an
interaction1; we say that it plays a specific role.

We developed role modeling tools for our own
use in the early eighties. Our tools were
demonstrated in the Tektronix booth at the first
OOPSLA in 1986. The first mention in print was
in an overview article by Rebecca Wirfs-Brock
and Ralph Johnson. [14] Our own report was in an
article in JOOP in 1992. [15] My book, Working
with Objects [6], explains role modeling in depth.
A theory of role modeling is given in Egil P.
Andersen’s doctoral thesis. [16]

Some of the role modeling concepts have made it
into the UML Collaborations and Interactions
packages as follows (my emphasis):

Collaborations2

Objects in a system typically cooperate with each
other to produce the behavior of a system. The
behavior is the functionality that the system is
required to implement.

A behavior of a collaboration will eventually be
exhibited by a set of cooperating instances
(specified by classifiers) that communicate with
each other by sending signals or invoking
operations. However, to understand the
mechanisms used in a design, it may be
important to describe only those aspects of these
classifiers and their interactions that are involved
in accomplishing a task or a related set of tasks,
projected from these classifiers. Collaborations
allow us to describe only the relevant aspects
of the cooperation of a set of instances by
identifying the specific roles that the
instances will play. Interfaces allow the

1More about responsibility driven design and roles in [13].
2 Extract from section 9.1 in OMG document formal/2007-
02-03. Reprinted with permission. Object Management
Group, Inc. (C) OMG. 2007.

externally observable properties of an instance to
be specified without determining the classifier
that will eventually be used to specify this
instance. Consequentially, the roles in a
collaboration will often be typed by interfaces
and will then prescribe properties that the
participating instances must exhibit, but will not
determine what class will specify the participating
instances. [7]

5/8/2007 11:20 AM 10 of 39 Reenskaug

A role model is analogous to a stage production.
Hamlet is a tragedy written by William
Shakespeare. In a certain production; the role of
Hamlet may be played by the actor Ian, Ophelia
by the actress Susan. Outside the stage, Ian and
Susan live their regular lives. Other productions
of the same play may cast different actors. Role
modeling sees a system of interacting objects as a
stage performance:

• A set of objects is like a set of available
actors.

• An object interaction is like a stage
performance and objects play roles just as
actors do.

• A role model corresponds to a drama. Both
describe what shall take place in terms of
roles and their actions. Neither specifies
objects, classes or specific actors.

• A BabyUML discovery is that the selection
and assignment of objects to roles can be
done by a query on the objects just as the
selection and assignment of actors to roles
is the task of casting.

• A role may be seen as an indirect link to one
or more objects.

• A role really exists only while it is being
played, i.e., when it is bound to one or more
objects. At other times, there may be no
object or actor assigned to the role.
Therefore, the role concept is a dynamic
concept.

As a role model example, we will consider the
Observer Pattern as described in the Design
Patterns book. [17] A design pattern describes a
solution to a general problem in such a way that it

can be realized in many different ways and made
to fit under many different circumstances. The
Observer Pattern is described in the book with a
textual description, a class diagram, and a kind of
collaboration diagram. I will here describe it with
a role model.

The essence of object orientation is that objects
collaborate to achieve some desired objective.
Three questions need to be answered: What are
the roles? How are they interlinked? How do they
interact? The answer to the first two questions is
the structure of roles that work together to reach
the objective and the links between these roles.

Fig. 5: The Observer role model

subject [1]
observer [*]

inputter [1]

Figure 5 show the Observer pattern as a role
model. We see three roles. There is one object
playing the subject role. There is one object
playing the inputter role. There is any number of
objects playing the observer role. They are all
linked to the single subject, and the subject is linked
to them all.

Every object has a unique identity. A role name
such as subject is an alias for one or more objects,
it can be seen as indirect addressing with dynamic
binding between role and objects. We use a role
name as an abbreviation of: “the object or objects
that play this role at a certain time and in a
certain context”.

Figure 6 specifies how the objects interact when
synchronizing subject and observer. We see that
inputter sends setState () to subject, presumably
changing its state. subject then sends an update ()
message to all observers. The observers finally
interrogate the subject to get the new state.

Fig. 6: An Observer interaction1 Fig. 7: Bridge between roles and classes

observer [*]
setState()

notify()

update()
getState()

inputter [1]subject [1]

interaction
algorithm

role object classre
fe

re
nc

in
st

an
ce

qu
er

y

e O
f

object
orientation

class
orientation

The reason for the OOram failure could be that I
had not found a conceptual bridge between roles
and classes. I have recently found this bridge; a
role is bound to a set of objects through a query.
The relations are illustrated informally in figure 7.
Object interaction is specified by an algorithm.
The algorithm references the interacting objects
indirectly through their roles. A query binds a role
to one or more objects. An object is an instance of
a class. There is no restriction on the formulation
of a query. Its results may vary over time so that
the role is a dynamic notion. The nature of an
object does not change over time so that the class
is a static notion.

Note that many objects may play the observer role
in different contexts and at different times, but we
are only concerned with the objects that play the
observer role in an occurrence of the interaction.
Also note that a role may be played by many
objects and an object may play many roles. In this
example, an object playing the inputter role could
also play the observer role. The collaboration
diagram in Design Patterns [17] mandated this by
showing two objects called aConcreteObserver and
anotherConcreteObserver respectively; the first also
playing the inputter role.

A role modeling tool called OOram was put on
the market, but the interest was not sufficient to
sustain it as a product.

An implementation of this unification is described
in section 5 on the DCA paradigm.

3D The BabyComponent

Section 2B demonstrated my need for injecting
some sort of object clustering into my systems.
The instance variables in the objects are in
themselves less than useful for this purpose. Some
of them may point to what can be considered
peers in a cluster, e.g., an activity predecessor.
Some of them may point out of a cluster, e.g.,
from an activity to its resource. And some of them
may point to sub-objects that may be considered
as parts of the object itself, e.g., from an activity
to its name. Well chosen variable names can help
a knowledgeable reader understand the semantics,
but it is a weakness that we only see the object

1This BabyUML sequence diagram describes
sequential interaction. A filled arrow is a method call.
A thin, vertical rectangle denotes a method execution.
The objects bound to the observer[*] role work in
lock-step; their updates appear to occur
simultaneously.

5/8/2007 11:20 AM 11 of 39 Reenskaug

structure from the perspective of a single object,
we do not see the structure as a whole.

Fig. 8: A Component is an object that
encapsulates other objects

activityNetwork «Component»

resources «Component»

gui «Component»

actDactB

actCactA

The UML definition of Composite Structures
provides the idea. In [7], we find the following1:

9.1 Overview

The term “structure” in this chapter refers to a
composition of interconnected elements,
representing run-time instances collaborating
over communications links to achieve some
common objectives.

There are many advantages of an architecture
based on the BabyUML components:

Internal Structure

The InternalStructure subpackage provides
mechanisms for specifying structures of
interconnected elements that are created within
an instance of a containing classifier. A structure
of this type represents a decomposition of that
classifier and is referred to as its “internal
structure.”

¤ My brain can better visualize how the system
represents and processes information. My code
can specify how components are interconnected
and how they interact. The code can thus
document the high level system architecture.

¤ The notion of components makes it easier to
ensure correspondence between the user’s mental
model and the model actually implemented in the
system. A babyComponent is an object that encapsulates

other objects and can loosely be described as an
instance of a UML Composite Structure. A
babyComponent looks like a regular object seen
from its environment and is characterized by its
provided interface. Regular objects and
components can be used interchangeably. Inside a
component, we find a bounded structure of
interconnected Member Objects.

¤ The component boundary forms a natural place to
put firewalls for security and privacy. Indeed, it is
hard to see how privacy and security can be
achieved without some form of enforced
component architecture.

The notion of a BabyComponent is useful in
many contexts. A specialization is the DCA
component described in section 5.

Figure 8 illustrates how the spaghetti of figure 3
can be replaced by a simple structure of three
interacting components. The notion of a
BabyComponent is recursive; I can organize
several hundred thousand objects in a component
structure so that I can deal with a manageable
number at each level.

3E The Database

5/8/2007 11:20 AM 12 of 39 Reenskaug

An early idea for system structuring was the idea
of separating system state and system behavior.
From the first, 1963 version, our Autokon
CAD/CAM ship design system [24] was
structured as a number of application programs
arranged around a central data store that held
information about the ship, its geometry and the
arrangement of its parts. Different application

1 Extract from section 9.1 in OMG document formal/2007-
02-03. Reprinted with permission. Object Management
Group, Inc. (C) OMG. 2007.

programs accessed the store through special
access routines that transformed the store’s data
structure to an apparent structure suitable for the
application as illustrated in figure 9.

5/8/2007 11:20 AM 13 of 39 Reenskaug

Fig. 9: Separating data and procedure

Data
store

Applicatio

Access routin

n

e

This separation of state and behavior is very
useful for our purposes. Consider the roles and
classes illustration in figure 7. Put the objects of
figure 7 in the data store and you get the Data of
the DCA paradigm. Put the role definitions with
their queries into the access routines and you get
the Collaboration of the DCA paradigm. Put the
interaction methods into the applications and you
get the Algorithms of the DCA paradigm. The
DCA paradigm is discussed further in section 5.

3F Aspect Oriented Programming

Some programming problems cannot easily be
captured by procedural or object oriented code
because they cut across procedures and objects.
Aspect Oriented Programming, AOP, [23] was

introduced to handle such cross-cutting aspects of
the problem. Examples are aspects related to
security and performance.

At a first glance, it seems that roles and
interactions can be such aspects since they cut
across class boundaries. A technology similar to
AOP should be able to support methods that are
defined for a particular role and thus shared
among all classes that implement this role. These
classes may specialize the role methods as
needed. There is an appealing symmetry here: A
class defines methods that are common to all its
instances. What if a role defines AOP-like
methods that are common to all objects that play
this role? An interesting thought for a future
experiment.

3G The Package

A UML package is used to group model elements.
A package is a namespace for its members, and
may contain other packages. A package can
import either individual members of other
packages, or all the members of other packages.
In Java, similar packages are used to group
classes and interfaces.

An object is an instance of a class. The classes in
its superclass chain are typically members of
different packages. An object is thus related to
several packages. The notion of a package relates
to compile-time issues and is irrelevant in the
context of interacting, run-time objects.

4 MVC:
THE MODEL-VIEW-CONTROLLER PARADIGM

How can we build a system that is experienced as
an extension of the user’s brain? How can we put
the user in the driver’s seat so that he can not only
run the program but also understand and even
modify its operation? How can we structure a
system so that it presents an image of the world
that corresponds to the user’s own conception of
it?

The answer was to replace the “dead” activity
records in traditional, procedure oriented planning
systems with interacting objects. The objects
would represent their owners within the universe
of interacting objects. The objects would be
specialized according to the needs of their owners,
yet they could all interact according to a common
scheme.

MVC was first conceived as a means for giving
human users control of the computer resources.
MVC bridges the gap between the users’ mental
model and the information represented in the
computer. The idea is illustrated in figure 10.

5/8/2007 11:20 AM 14 of 39 Reenskaug

data

I implemented the first MVC while being a
visiting scientist with the Smalltalk group at
Xerox PARC. [10] The conventional wisdom in
the group was that objects should be visible and
tangible, thus bridging the gap between the human
brain and the abstract data within the computer.
This simple and powerful idea failed for the
planning systems for two reasons. The first was
that a plan was a structure of many activity and
resource objects so that it was too limiting to
focus on one object at the time. The second was
that users were familiar with the planning model
and were used to seeing it from different
perspectives. The visible and tangible object
would get very complex if it should be able to
show itself and be manipulated in many different
ways. This would violate another Smalltalk ideal;
namely that code should be visible, simple, and
lucid.

Fig. 10: Bridge the gap between the user’s mind
and the stored data

another

model
mental

computer
Model

pipe assembly

model
mental

a

manager
shop

manager
line

The domain of my first MVC was shipbuilding.
The problem was project planning and control as
described in section 2A. A manager was
responsible for a part of a large project. His
department had its own bottlenecks and its own
considerations for planning. Other departments
were different; a pipe shop was very different
from a panel assembly line which was again very
different from a design office. How could each
manager have his own specialized part of the
planning system while preserving the integrity of
the plan as a whole?

4A The MVC Model

The terms data and information are commonly
used indiscriminately. In the Stone Age, IFIP
defined them precisely in a way that I still find
very fruitful when thinking about the human use
of computers [19]:

DATA. A representation of facts or ideas in a
formalized manner capable of being

communicated or manipulated by some process.
Note: The representation may be more suitable either for
human interpretation (e.g., printed text) or for internal
interpretation by equipment (e.g., punched cards or
electrical signals).

Fig. 11: The View couples model data to the
information in the user’s brain

so that they appear fused into one

5/8/2007 11:20 AM 15 of 39 Reenskaug

INFORMATION. In automatic data processing the
meaning that a human assigns to data by means
of the known conventions used in its
representation.
Note: The term has a sense wider than that of information
theory and nearer to that of common usage1.

So the user’s mental model is information,
information does not exist outside the human
brain. But representation of information can and
do exist outside the brain. It is called data. In the
network example, the Model is the data
representing the activity network and the
resources. The Model data may be considered
latent because they need to be transformed to be
observable to the user and related to the user’s
mental model of the project.

I will discuss the Java implementation of the
View and Controller below, and the Model with
its links to the View-Controller pair in section 5.

4B The MVC View

The View transforms the latent Model data into a
form that the human can observe and convert into
information as illustrated in figure 11.

mental
model computer

data
ModelView

I will discuss the Java implementation in
section 5E.

4C The MVC Controller

The Controller is responsible for creating and
coordinating a number of related Views. I
sometimes think of the Controller-View
combination as a Tool that the user employs to
work with the system’s latent information.2 3

Fig. 12: The Controller creates and coordinates
multiple Views

mental
model

computer
data
Model

Controller

View

mental
model

Looking back to section 3C on role models, we
realize that Model, View, and Controller are roles

2Note that a Smalltalk 80 Controller is only responsible for
the input to a single view. It is thus different from the one
discussed here, see [18].
3Also note that some so-called MVC structures let the
controller control the user interaction and thus, the user.
This idea is fundamentally different from MVC as described
here. I want the user to be in control and the system to
appear as an extension of the user’s mind.

1 ©IFIP 1966. Quoted with permission.

1. The top strip is an instance of class ButtonStrip; it
contains command buttons.

played by objects. Their classes are unspecified
and irrelevant to the MVC paradigm.

2. The second strip is an instance of class
DependencyPanel; it is a view that shows the
activities with their technological dependencies. 4D The anatomy of the Java user

interface code
3. The third strip is an instance of class GanttPanel;

it is a bar chart showing the time period for each
activity.

4. The fourth strip is an instance of class
ResourcePanel; it shows the activities that are
allocated to the resource in each time period.

The GUI for the network example was shown in
figure 2. Figure 13 shows the same GUI annotated
with the implementation class names for its main
parts. We see that the four strips of the tool are

Fig. 13: The anatomy of the MVC Java tool.
(: ButtonStrip means an instance of class ButtonStrip)

: ButtonStrip
: Button

: ActivityView

: ResourcePanel

: GanttPanel

: DependencyPanel

An overview of the implementation is shown in
the class diagram of figure 14. In my traditional
programming style, the views would all be
associated with the model. In this implementation,
I reduce the number of associations in order to get
a simpler and cleaner structure. The views are
now subordinated the controller by being enclosed

in a controller-managed component. This is
indicated by a dashed line in figure 14. The Model
and Controller are shown in heavy outline to
indicate that they are the main collaborators in
this implementation. The Views, being
subordinate in this implementation, are shown in
light outline. The Java library superclasses are
shown dashed along the top of the diagram.

5/8/2007 11:20 AM 16 of 39 Reenskaug

5/8/2007 11:20 AM 17 of

 39 Reenskaug

present

Fig. 14: Java class diagram

controller.
Controller

controller.views.
PanelView

controller.views.
ResourcePanel

controller.views.
GanttPanel

controller.views.
DependencyPanel

controller.views.
ActivityView

model.
Model* 1

1

1

1

1

1**

java.awt.
Button

java.awt.
Panel

java.applet.
Applet

java.util.
Observable

I will go into more details when I discuss the Model internals and system behavior in section 5.

4E Controller code coordinates
selection

I will now take the selection function as an
example of how the controller coordinates the
behavior of the views.

Fig. 15: actA is selected in all views where it
appears

activityView

Figure 15 shows the tool after the user has clicked
on any of the actA activity views. The key to

simplicity and generality is that the view being
clicked only reports this event to the controller
object. The controller decides that this is indeed a
selection command, and that it shall be reflected
in the appearance of all activityViews, including the
one that was clicked. This behavior is illustrated
in the BabyUML sequence diagram of figure 16.

Fig. 16: The selection interaction

pointAndClickMouse

selectionChanged()

isSelected()

User

actionPerformed()

activityView [*]controller [1]inputView [1]

In this program, the inputView role happens to be
played by an instance of class ActivityView. We see
from figure 14 that ActivityView is an awt.Button, so it
sends an actionPerfomed event to its actionListener.
All activityViews are created to let the controller be
their actionListener.

5/8/2007 11:20 AM 18 of 39 Reenskaug

Discussion 1. A variant of the selection interaction could
use the Observer pattern1 to let the controller alert the views
about a changed selection. On the face of it, this is very
flexible, extensible, and so on. But in this case, it would
merely be an obfuscator. The observer pattern is useful
when the subject should be decoupled from its dependents.
But here, the controller knows its views since it created
them. The direct solution is the simplest and does not restrict
flexibility and extensibility.

Discussion 2. We see from figure 14 that the controller
knows both panels and activityViews. An alternative could
be to let the controller know the panelViews only. Each
panelView could then act as a local controller for its
activityViews. The programmer of the top level controller
would then not need to know the inner workings of the
panels. I did not choose this solution because I wanted to
keep the experimental program as simple as possible.

1See section 3C.

5 DCA:
THE DATA-COLLABORATION-ALGORITHM PARADIGM

I now come to the Model part of MVC. Seen from
the Controller, it looks like an ordinary object.
But a single object that represents all activities
and resources would be a monster. My new DCA
paradigm tells me how to master a monster object
by clearly separating roles from objects and by
creating bridges between them as illustrated in
figure 7.

5/8/2007 11:20 AM 19 of 39 Reenskaug

The Model of the MVC paradigm is implemented
as a DCAComponent. It looks like a regular object
from the outside, characterized by its provided
operations. Inside, there is a well ordered and
powerful object structure partitioned into three
parts, Data, Collaborations, and Algorithms. I
hinted at the nature of these parts in the
introduction and will now go into the details.

5A The MVC Model part as a single
object

The Java tutorial [20] describes an object as a
number of variables (state) surrounded by
methods (behavior) as illustrated in figure 17(a).
This is actually a better illustration of the
Smalltalk object than the Java object. In
Smalltalk, the variables are invisible from outside
the object; all access has to be through the
methods.1

Figure 17(b) shows an alternative illustration that
I use as a starting point for discussing DCA.
Borrowing terminology from UML, I use the term
owned attributes to denote the object state (fields,
instance variables). I use the UML term derived

attributes to denote attributes that are computed
rather then stored. For example, a person object
could have birthDate as an owned attribute, while
age could be a derived attribute. Other methods
implement the object’s provided operations.

1 The Java object is different; the fields are visible from the
outside. I write x = foo.fieldX; to access a field directly, and
I write x = foo.getFieldX(); to access it through a method.

Fig. 17: The object as an instance of a class.
a) The object as depicted in the Java tutorial.

(b) A more accurate object model

(a) (b)

owned
attributes

(state)

regular
methods

(behavior)

Methods
(behavior)

Variables
(state)

(a) (b)

owned
attributes

(state)

regular
methods

(behavior)

Methods
(behavior)

Variables
(state)

derived attributesderived attributes

Behavior is activated in an object when it receives
a message. The message is dynamically linked to
the appropriate method, and the method is
activated. This link is symbolized by a small
circle on the object boundary in figure 17(b).

5B The DCA Component; a well-
structured monster object

• The code for the Data part should ideally be
declarative in the form of a conceptual
schema, but I merely implement some Java
classes in the network example. Fig. 18: The DCA component

Collaborations

Algorithms

Data I do not assume persistence, concurrency, access
control, security, or any other goodie usually
associated with databases. There is also an
addition to mainstream database technology; the
DCA data are encapsulated within a component
so that the system as a whole can include a
hierarchy of independent “micro databases”.

5B2 The C stands for Collaboration Figure 17 shows an object as an entity that
encapsulates state and behavior. Figure 18
illustrates the DCA component. It looks like the
object of figure 17 when seen from its
environment. Inside, there are a number of
specialized parts: Data, Collaborations, and
Algorithms.

DCA Collaborations correspond to the derived
attributes of the regular object. Algorithms access
the domain objects through the roles these objects
play. Collaborations bind roles to domain objects
through queries as illustrated in figure 7. A role
can be seen as indirectly addressing one or more
domain objects, making it possible to address
different objects at different times without
changing the algorithm code. The notion of
Collaborations is derived from the OOram role
model [6] and corresponds to the external views
used in database technology.

5B1 The D stands for Data

The Data part corresponds to the variables (owned
attributes) of the regular object. The variables are
replaced by a “baby database” that holds the
component’s domain objects and their structure.
The term “database” is used in a restricted sense;
it is a set of domain objects organized according
to a conceptual schema. The schema can be read
and understood independently of the system
around it; an important step towards system
simplicity:

In this experiment, collaborations are coded as
classes that have the collaboration roles as
attributes and the database queries as methods. A
DCA Collaboration is an instance of such a class
where the results of the queries are assigned to the
role variables, thus binding roles to actual domain
objects. A binding is only valid in a certain
context and at a certain time and realizes a kind of
dynamic, indirect addressing, 1 • The domain objects are organized in a

number of relations in the first normal form,
ensuring referential integrity.

• The structure is represented in explicit
relations. Contrast with my traditional
representation where structure information
is fragmented among the domain objects.
The DCA domain objects are
correspondingly simplified.

1The DCA Collaboration corresponds to the UML
CollaborationUse. My choice of name reflects my focus on
objects rather than classes.

5/8/2007 11:20 AM 20 of 39 Reenskaug

5/8/2007 11:20 AM 21 of 39 Reenskaug

resourceB
aseresourcePanel

allocations
ganttPanel

rankedCollab
roles

frontCollab
roles

Objects using a Collaboration see the Data in a
perspective optimized for their needs. Note that
these user objects can be internal or external to
the Model.

5B3 The A stands for Algorithm

Algorithms occur in two places in the DCA
paradigm. Some are local to the domain objects
and are coded as methods in the domain classes.
Other algorithms describe domain object
interaction and are properties of the inter-object
space. The interaction algorithms are coded in
separate classes in BabyUML, distinct from the
domain classes. This ensures that object
interaction is specified explicitly and makes it
easier to check the code for correctness and to
study the system dynamics.

5C The MVC Model part as a DCA
component

The Model part of the network example is
implemented as a DCA component. Some

important objects are shown in figure 19. For
illustrative purposes, I have separated the Data
into two sub-parts. The netBase holds the activity
network in two relations. The activities relation is a
list of Activity objects. The dependencies relation is a
list of Dependency objects, each having a
predecessor and successor attribute. The resourceBase
has a single relation, allocations, that is a list of
Allocation objects, each having a time and an Activity
attribute.

We have previously seen that the GUI is split into
a controller object and three panelView objects, each
with a layout algorithm that creates its display. In
addition, the frontload command button activates
the frontload Algorithm. The Algorithms are users
of the DCA Data and access them through
suitable Collaborations.

In the following, I will discuss the code for the
dependencyPanel and frontload buttons together with
their algorithms and data access collaborations as
illustrated in figure 19.

Fig. 19: The MVC Model part as a DCA model.

activities netB
ase

frontload()
Algorithm

MVC Model

dependencies

MVC Controller + Views

addActivityViews()
AlgorithmdependencyPanel

DependencyPanel::private void addActivityViews() {

 for (int rank=0; rank <= rankedCollab.maxRank(); rank++) { 5D The Data structure defined by a

schema

 for (Activity act : rankedCollab.activityListAtRank(rank)) {
 ActivityView actView = new ActivityView(controller, act, 24) ;

The Data parts are defined by their schemas.
Figure 20 shows the netBase schema expresses as a
UML class diagram.

 add(actView);

 }
 }
} Fig. 20: The netBase schema as a UML class

diagram
This layout algorithm accesses the activity objects
through the rankedCollab, an instance of the
RankedCollab class. This collaboration presents the
data in a table with two columns: rank and
activity. The table is accessed through the call to
activityListAtRank () in the fifth line of the above
code.

Activity
name
earlyStart
earlyFinish
duration
color

predecessor

successor

1

1

DependencyDependency

The rankedCollab object has a simple recursive
method for computing the rank of all activity
objects. The rankedCollab object could safely cash
the results because it is an observer of the network
as a whole and can recompute the rank when
necessary.

The corresponding Java class declarations are
trivial.

5E Example 1: Panel layout

 Figure 21 illustrates that the unit on the horizontal
axis in the DependencyPanel is the activity rank; i.e.,
the max length of the activity’s predecessor chain
from the activity to the start of the network.
Activities having the same rank are stacked
vertically.

 RankedCollab::public List<Activity> activityListAtRank(Integer rank)
{
 List<Activity> activityListAtRank = new ArrayList<Activity>();
 for (Activity act : netBase. activities()) {
 if (rankOf(act) == rank) {
 activityListAtRank.add(act);
 }

Fig. 21: The ranked activities }
 // Hack. Sort to ensure always same diagram.

5/8/2007 11:20 AM 22 of

actA (1-2-3)
rank = 0

actC (3-3-6)
rank = 1

actB (1-7-8)
rank = 0

actD (8-2-10)
rank = 2

 Collections.sort(activityListAtRank, NAME_ORDER);
 return activityListAtRank;
 }

5F Example 2: Frontloading

The DependencyPanel layout Algorithm is as simple
as can be. (Too simple, actually, it will often lead
to overlapping dependency lines.) The most
interesting statements in the DependencyPanel class
are as follows:

Frontloading is the calculation of the earlyStart and
earlyFinish for each activity given the start time of
its predecessors. We see from figure 21 that actA
and actB can both start when the project starts,
e.g., in week 1. actA then finishes in week 2 and

 39 Reenskaug

5/8/2007 11:20 AM 23 of 39 Reenskaug

actB in week 7. We can now compute earlyStart and
earlyFinish for actC. actD can finally be computed
since we know the earlyFinish for both actC and actB.
The result of the frontloading is shown in the
Gantt diagram of figure 2.

The frontloading operation is traditionally
distributed among the activity objects. A default
method could look like the following:

Activity :: public void frontloadSimple (Integer projectStart) {
 earlyStart = projectStart;
 for(Activity pred : predecessors()) {
 earlyStart = Math.max(earlyStart, pred.earlyFinish() + 1);
 }
}

The problem with this simple solution is that the
method cannot be triggered in an activity object
before the earlyFinish of all predecessors are
known. This means that the frontload network
operation belongs in the inter-activity space and
should be treated at a higher system level.

The common frontload logic could be in a method
in the Model class, but I feel that this would be
overloading a class that should be clean and
simple. So the top level frontload () method is coded
in a separate FrontloadAlgorithm class. Three
problems need to be resolved:

1. Identifying activities that are ready to be planned
is essentially a query on the Data objects. This
work properly belongs in a collaboration class,
here the FrontloadCollab class.

2. The earlyStart of an activity depends on all its
predecessors and all modifiers such as activity
overlap etc. This logic belongs in the inter-
activity space and is here coded in the
FrontloadAlgorithm class.

3. The earlyFinish of an activity once its earlyStart is
known depends on the activity alone. The code,
therefore, belongs in the Activity class.

I will discuss the coding of these actions in turn.

5F1 FrontloadCollab, the frontloading
collaboration

I have chosen a query-based solution to illustrate
how a query result changes through the
frontloading process. An activity is ready to be
loaded if it is not yet loaded and if all its
predecessors have been loaded. Here is the query
that finds a candidate activity for frontloading
expressed in an unspecified language:

define frontloader as
 (select act
 from Activities act
 where act.earlyStart == null and (
 for all pred in predecessors
 (pred.earlyStart != null)
) someInstance

The FrontloadCollab code is not trivial, but it is
nicely isolated giving an attractive separation of
concern. The complete code for class
FrontloadCollab can be found on the enclosed CD.

5F2 FrontloadAlgorithm, the frontloading
interaction algorithm

The frontload algorithm can be expressed in terms
of the frontloader role and can loop until frontCollab
fails to bind that role to an object. I can give the
code to a colleague and ask her to audit and sign
it. The frontloading interaction is implemented in
the FrontloadAlgorithm class:

FrontloadAlgorithm::public void frontload (Integer startWeek) {

 Activity frontloader;
 while ((frontloader = frontloadCollab.frontloader()) != null) {
 Integer earlyStart = startWeek;
 for (Activity pred : frontloadCollab.frontPredecessors()) {
 earlyStart = Math.max (earlyStart, pred.earlyFinish() + 1);
 }
 frontloader.setEarlyStart(earlyStart);
 }
}

We see that frontCollab defines two roles; frontloader
is the activity object being loaded, and

5/8/2007 11:20 AM 24 of 39 Reenskaug

frontPredecessors are its predecessor objects. The
frontload code is pure algorithm with no confusing
side issues. It is thus a good starting point for
dealing with more complex situations.

5F3 The frontloading earlyFinish algorithm in
the Activity class

The activity object is responsible for all activity
properties and can compute its earlyFinish when the
earlyStart is known:

public class Activity {
 private Integer earlyStart, earlyFinish, duration;
 ...
 public void setEarlyStart(Integer week) {
 earlyStart = week;
 earlyFinish = earlyStart + duration - 1;
 }
 ...

5/8/2007 11:20 AM 25 of 39 Reenskaug

6 THE BabyUML LABORATORY

I am now entering upon a new stage in the
BabyUML project and find it opportunely to
restate the project goal:

The goal of the BabyUML project is to increase
my confidence in my programs. The keywords
are simplicity and leverage. Simplicity helps me
to think clearly and a reader to understand and
audit my code. Leverage lets me say more with
less. The end result shall be a new interactive
development environment with appropriate
languages and tools for supporting high level
abstractions.

The results reported in the previous sections have
revealed the kind of abstractions that shall be
parts of BabyIDE, the BabyUML integrated
development environment

My completed experiments have clarified the
notions of a class to describe the nature of an
object and the notion of a role to describe its place
in an interaction. I also have the notion of a
collaboration to select the objects that play
certain roles at certain times and in certain
contexts. It is now time to turn to the tool. What
does it take to create a tool that implements roles
and classes on an equal level? The notion of a
class is well covered in current programming
languages, but the notion of a role is more elusive.
I need to lift the role to the same level as the class;
I already know how to bridge the gap between
them.

The next stage is to experiment and try out novel
semantics for classes and roles together with tools
for design, compilation, debugging, and
inspection.

In the Java network example, the roles were
represented as attributes in collaboration classes

and the queries were coded as regular methods in
those classes. The notion of a role was in my
head, not in the code. Another weakness was that
the language for defining the DCA Data schema
was regular Java where I would have preferred a
declarative language. I need to experiment with
different notions of classes, roles, components,
and other concepts in my next move towards the
BabyUML goal. I need a BabyUML laboratory.

The nature of an object is specified by the object’s
class; the object is an instance of that class.
Different kinds of objects are instances of
different classes. But the concept of a class is
rigidly defined in the language specification of
common object oriented languages such as Java.
Contrast this with the Smalltalk stored program
environment. Classes are here represented as
regular objects. This means that the concept of a
Smalltalk class is defined by its class, a metaclass.
Classes and metaclasses come in pairs, the
metaclass being responsible for static methods
and variables. The notions of classes and
metaclasses are defined in the default Smalltalk
class library. I can complement them with my
own versions by implementing my own ideas. The
extreme flexibility of Smalltalk makes it an ideal
foundation for my BabyIDE laboratory. This does
not mean that a future BabyIDE product need be
written in Smalltalk; the product can be written in
any language based on a specification expressed
as a Smalltalk prototype.

BabyIDE starts from a simpler basis where an
object is an instance of a class, a class is an
instance of MetaSimpleclass, this metaclass is an
instance of MetaMetaclass, and MetaMetaclass is
an instance of itself. Other kinds of classes will
later be added by adding new metaclasses. The
instantiation hierarchy is essential for
understanding the nature of all objects.

A class may be subclass of another class that may
be subclass of some other class, etc. This class
inheritance hierarchy is useful for code reuse and,
to a certain extent, for organizing the
programmer’s thoughts. The nature of an object is
not influenced by the actual ordering of classes in
a chain of superclasses because the chain can
always be refactored into a single class as
described in section 3B.

The instantiation and inheritance hierarchies are
orthogonal. The human brain does not seem well
equipped to deal with two hierarchies
simultaneously, and the instantiation and
inheritance hierarchies have been confused by
better brains than mine. Yet progress in the
BabyUML project depends upon alternative
definitions of the concepts of class and metaclass.
As a start, I have implemented the core objects of
a BabyUML laboratory including my own
versions of class and metaclass as a foundation for
further experiments.

5/8/2007 11:20 AM 26 of 39 Reenskaug

Section 6A describes what I mean by an
integrated development environment as distinct
from a modeling tool equipped with code
generators. Section 6B introduces the BabyUML
object notation. This is a notation for the run-time
objects as distinct from the well known notation
for compile-time classes as they appear in UML
class diagrams. Section 6C describes the
BabyUML laboratory as it is embedded within the
Smalltalk stored program object computer. This
section is somewhat detailed because I find that
its careful attention to run-time objects is an
excellent antidote to the potential confusion of
instantiation and inheritance.

6A The Integrated Development
Environment

Nusse, the first Norwegian computer, was
deployed in 1953. Its smallest addressable unit
was a word of 32 bits. When I started

programming in 1958, I met a computer where
data and operations were indistinguishable in the
computer memory; my programs typically
modified themselves. I moved a word to the
accumulator register and the computer treated it
as an operand in an operation. I moved the same
word to the operation register and the computer
executed it. My mind-set was binary, my
programs were written in binary, and I ran and
inspected the programs from the binary console.
There was an exact correspondence between the
program in my mind and the bits in the computer.
Figure 22 illustrates the situation. The man-
machine system was harmonious because the
same conceptual framework applied throughout
my thinking, coding, debugging, and inspecting.

Fig. 22: The programmer’s mind and the
computer

run

compileinspect

think

I moved to larger computers and higher level
languages. A gap opened between my mind and
the realities of the computer. I thought in
FORTRAN, I coded in FORTRAN, a compiler
translated my code into binary, but the inspect
path remained binary. Harmony was lost; I have
spent innumerable hours debugging my FORTRAN
programs by manually decoding pages of
hexadecimal dumps.

The loop in figure 22 was again closed when the
plain compilers grew into integrated development
environments. First for FORTRAN, today I use the
Java NetBeans IDE1. I think, code, inspect, debug,

1http://www.netbeans.org/

and even refactor a program within the conceptual
framework of Java.

6B The BabyIDE Object Notation

The BabyIDE is centered on objects and their
interaction. Interacting objects can only see the
provided operations of their collaborators.
Conceptually, an object appears to encapsulate
state and behavior. BabyIDE introduces new
notations for objects. A notation for the external
properties of an object is described in
section 6B1. A notation for the object as a
conceptual entity is described in section 6B2. The
object implementation with class and superclasses
is discussed in section 6C.

I introduced a new mismatch when I began
thinking in terms of MVC and DCA. I had to
translate my mental models into Java code, and
then compile, inspect, and debug within the Java
environment. My mental model was in my head
only, and a Java expert reading my code couldn’t
possibly guess my models. I could comment the
code, but the comments would clutter the code
and often be misleading. Extensive documentation
could help, but I can never promise to maintain
exact correspondence between documentation and
code. I am highly motivated to improve the code;
comments and documentation can be fixed later. The notations presented here symbolize concrete

objects with their identity, state, and behavior.
The notations will later be modified to symbolize
roles. I tried using an advanced UML modeling tool for

creating the demo program. There were several
difficulties that hindered me working exclusively
in UML. The three most important were:

6B1 The Encapsulated Object notation ¤ The tool only implemented parts of the UML 2.0
definition. The first stumbling block was that it
lacked a necessary feature in the UML sequence
diagram.

An object is encapsulated; it can only be accessed
through its provided operations. Its attributes and
methods are invisible from its environment.
BabyIDE uses the encapsulated object notation
shown in figure 23 to denote an object seen as a
black box.

¤ The code generator was incomplete. The
generated code was a mere skeleton; I had to fill
in most of the code in Java. So much so that there
was very little gain from using the additional tool
for my simple problem and I quickly abandoned
it. Fig. 23: Examples of the encapsulated projection

5/8/2007 11:20 AM 27 of 39 Reenskaug

name
frontload: firstWeek
descriptor

<2232>actD

(a) (b)provided operations

name
frontload: firstWeek
descriptor

«interface»
ActivityIntf

<2232>actD

These two difficulties can, in principle, be
overcome with a more complete tool
implementation. But the third is inherent in the
idea of a model with a code generator:

¤ The code generator only transforms the model
from UML to Java. I still have to inspect and
debug in terms of Java. The correspondence with
my MVC and DCA models is far from simple.
Harmony is lost. The BabyIDE notation for an object is a rounded

rectangle; its corners are rounded to distinguish it
from the UML classifier. An object has a unique
identifier, the objectID that is shown in angle
brackets <...>. Some objects have a name; this is

then shown after the objectID. There are two
equivalent notations. The inline form in figure 23
(a) is useful in simple diagrams. The compact
form of figure 23 (b) uses the UML symbol for an
interface to show provided operations. A tool can
pop up the interface dynamically so as to save
screen acreage.

5/8/2007 11:20 AM 28 of 39 Reenskaug

Note that I use the Smalltalk syntax throughout
this section. For example, name is equivalent to
the Java name() method call.1 The Smalltalk
frontload: firstWeek is equivalent to the Java
frontload(firstWeek).

The encapsulated object notation is useful in
“wiring diagrams” showing structures of
interlinked objects as illustrated in figure 24.

Fig. 24: “Wired” objects implementing the
planning network example

<2232>actD
<0126>actB

<1125>actC<0723>actA

6B2 The Conceptual Object Notation

An object encapsulates state and behavior. We all
know that many of the object’s features are
specified by its class and superclasses, but we
shall not let it confuse us. It is the object that has
state and behavior; it is the object that interacts
with other objects. So we hide the classes and
pretend that the object itself holds all that it
encapsulates. The result is the conceptual object;
very effective as a concept and very inefficient if
naïvely implemented. We again use a rounded

rectangle to denote an object and get the white
box view of figure 25. We see selected object
features, but we do not see how they are
implemented. The conceptual object has three
compartments:

¤ The top compartment shows the objectID <2232>
together with a possible name.

¤ The middle compartment shows some or all of
the names and values of the object’s instance
variables.

¤ The bottom compartment shows some or all of
the operations. A tool could also show the code
that implements a selected operation so that it can
be inspected and edited.

Fig. 25: Example conceptual, white box object
projection

predecessors
earlyFinish

frontload:
inspect

name

successors
{<0126>. <1125>.}

 9

{ }

 8
 2
'actD'

earlyStart
duration
activityName

<2232> actD

6C The Smalltalk Stored Program
Object Computer

Smalltalk [9] is the ideal proving ground for
BabyIDE. The Smalltalk notions of class, method,
programming language and programming tools
are all realized by objects. A new class is created
by sending the message new to its metaclass;
another object. The code for a method is
translated from its text form to byte codes by a
compiler method that is part of the class object.
This means that BabyIDE can implement its own
notions of programs, programming languages and
tools by simply replacing the Smalltalk library
classes with alternative ones.

1In Java, name is a reference to the corresponding instance
variable. Instance variables are invisible from outside the
object in Smalltalk, so name must here necessarily be an
operation.

In this section, I give a detailed description of
how objects and classes are implemented in the
default Smalltalk class library. I need this deep
understanding of the default Smalltalk way before
I can safely create my own variants of almost any
of the Smalltalk library classes for the purposes of
my new BabyIDE.

Fig. 26: The Smalltalk stored program virtual
object computer

Smalltalk Object Space (Image)

<2>object2<1>object1

<5>metaclass3

<3>object3

Smalltalk
Virtual Machine (VM)

<4>class1

Figure 26 shows Smalltalk as a virtual, stored
program, object computer. Object, because all
data are represented as objects; even Booleans,
numbers, and characters; classes and methods;
stacks and activation records; inspectors and
debuggers. Virtual, because it is realized in
software by the Smalltalk Virtual Machine (VM).
Stored program because programs are represented
as regular objects. Smalltalk objects are stored in the Object Space,

the image. The VM creates a new object when
told to do so by a class method; returning the
objectID of the new object so it can later be the
receiver of messages. The VM also removes
objects as they become unreachable (garbage
collection).

The bytes representing an object are stored on the
computer’s memory heap. It would be
ridiculously inefficient if all the features of an
object should be stored in every object. The
<2232>actD object only stores its state values as
indicated on a white background in figure 27. In
addition, the object has a number of hidden
values, the most important being its identity and a
link to the class object. The rest is delegated to the
class and superclass objects as illustrated in the
figure.

5/8/2007 11:20 AM 29 of 39 Reenskaug

Fig. 27: Implementation of the example object.

superclass =
format =

methodDict =

attributes=
className =

<0002> Object

...
...

class «instanceOf»

superclass
«subclassOf»superclass=

format =
methodDict =

attributes=
className =

<0148> Activity

...
compile:

new

predecessors =
earlyFinish =

earlyStart =
duration =

activityName =

<2232> actD

frontload:
name

 {<0126>. <1125>.}
 9
 8
 2
'actD'

<002> Object
...
 {name, frontload:...

{'activityName', 'duration'...
 #Activity

nil
...
 {inspect ...

 {}
 #Object

apparent
operations

apparent
attributes

...

inspect

¤ The figure shows clearly how the «instanceOf»
relation essentially defines the object’s semantics,
while the exact distribution of feature definitions
along the «subclassOf» relations is irrelevant to
the object and thus is in the nature of a comment.

The objects in figure 27 are as follows:

¤ The object that is in the center of our interest has
objectID=<2232> and stores the values ‘actD’, 2, 8,
9, {<0126>. <1125>.}

¤ The <2232>actD object is an instance of class
Activity, represented in the <0148>Activity object.
This class object has a link to its superclass,
<0002>Object. The superclass of <0002>Object is
nil, thus terminating the superclass chain.

A class object has a methodDict attribute that binds
operations (selectors) to the corresponding
CompiledMethod objects. A CompiledMethod object
contains a sequence of VM instructions (byte
codes) and also a link to the corresponding source
code. There are byte codes for getting and setting
attribute values as well as for sending messages to
specified objects.

¤ The names of the object’s attributes are the union
of the attributes attribute of the class and all its
superclasses. They are shown on a gray
background in the middle portion of the
<2232>actD conceptual object.

¤ The object’s operations are a union of the
operations defined in the methodDict attribute of
the class and all its superclasses. The operations
are shown in the bottom portion of the
<2232>actD object. A tool can display the
corresponding methods.

Object behavior is activated when an object
receives a message. The message is an object with
attributes for sender, receiver, message selector
(operation) and actual parameters. The VM
locates the receiver’s class object and looks up its

5/8/2007 11:20 AM 30 of 39 Reenskaug

5/8/2007 11:20 AM 31 of 39 Reenskaug

methodDict dictionary to find the corresponding
CompiledMethod. If not found, it recursively tries the
methodDict of the superclasses. If this search fails,
the VM starts the search anew with the default
selector doesNotUnderstand: aMessage. The search
will never fail because the doesNotUnderstand:-
method is defined in the root class. Once the
search has succeeded, the VM creates an
activation record (an object) and puts it on the
stack (another object). It then begins executing the
method’s byte codes in the context of the
activation record. The method’s byte codes can
send a message to an identified receiver object,
and the story repeats itself.

The <2232>actD object responds to the frontload:
operation. The corresponding method is stored in
the methodDict attribute of the <0148>Activity class
object. The <2232>actD object also responds to the
inspect method that is stored in the <0002>Object
class object. Both of them are visible to the
collaborators of the <2232>actD object as bona fide
operations on that object.

There are two important kinds of relationships in
figure 27; the «instanceOf» and the «subclassOf»
relationships. The implementation of an object
consists of one «instanceOf» relation to its class object,
followed by any number of «subclassOf» relations up
the superclass chain. The two kinds of relations can
easily be confused by the unwary. For example, the
features of the <2232>actD object are stored in
attributes in its class object, <0148>Activity with its
superclasses. Correspondingly, the features of the
<0148>Activity class object are stored in attributes of
its class object, its metaclass (not shown in
figure 27). I look at an object; its features are in
the attributes of its class object. I look at the class
object; its features are in the attributes of the
metaclass. This characteristic of “everything is
stored somewhere else” is a potential source of
extreme confusion. It is here that the BabyUML
conceptual object notation proves its worth by
showing state and behavior where they belong
conceptually, rather than where they happen to be
stored.

It is hard to see where the UML class symbol fits
in. It does not symbolize the instance, because the
instance is a merger of all classes in the superclass
chain. It is does not symbolize the class object,
because the features shown in the UML symbol
are not the features of the class object.

In my first BabyIDE experiment, I tried to realize
a stored program object computer by simply
instantiating the UML metaclasses to get my
stored program class objects. I failed because
there is a fundamental difference between UML
class diagram and the corresponding run-time
objects. Take the notion of a link. In UML, it is
defined by three interlinked elements:
anAssociationEnd, anAssociation, and
anotherAssociationEnd. These three model elements
form the high level description of a run-time
binary link that can be realized as a pair of
instance variables. The model elements must be
compiled into the run-time objects; instantiating
UML metaclasses to get run-time objects simply
does not work. I abandoned this first, naïve
approach and accepted that I must clearly
distinguish between compile-time and run-time in
my experiments.

The conclusion was that the UML class symbol
represents the source code and is inappropriate for
describing run-time objects in a stored program
object computer. The motivation for introducing
the BabyIDE object notation discussed in
section 3B was to resolve this difficulty.

The <0148>Activity class object has its own provided
operations with the corresponding methods. In the
default Smalltalk implementation, it responds to
the message compile: sourceCode. The corresponding
method is a compiler that translates the sourceCode
into a CompiledMethod and installs it into the
methodDict for later execution by an instance of this
class. In BabyIDE, I will use this feature to
provide different compilers for different
languages, new or old. The CompiledMethod object
has a link to its sourceCode, thus making it feasible
to close the loop of figure 22.

6D The BabyUML Laboratory
Implementation

Fig. 28: The BabyIDE laboratory is embedded in
the Smalltalk object space

Smalltalk Object Space (Image)

<2>object2<1>object1

Smalltalk
Virtual Machine (VM)

<4>object4

BabyIDE objects

<7>bClass7

<6>bObject6

I argued for the choice of Smalltalk for
implementing BabyIDE in section 6C. The choice
of its Squeak dialect [25] was harder. It is fairly
easy to learn the semantics and syntax of the
Smalltalk programming language, but it can be
frustrating to become familiar with its pragmatics
and class libraries. Squeak is even more
frustrating because it is evolving very rapidly and
any release includes a large number of
undocumented features in different states of
completion. But the advantages far outweigh the
objections:

¤ The most important argument is that there is a
very active and creative community around
Squeak. Many ideas that can be applied to
BabyIDE are to be found in the Squeak mailing
lists and the evolving class and package libraries.

Figure 28 illustrates the BabyIDE
implementation. The baby objects have their own
classes, metaclasses, and metametaclasses; but
they can freely interoperate with regular Smalltalk
objects because they all conform to the VM
conventions.

¤ Squeak is open source; there are no obstacles to
the distribution of the BabyIDE laboratory to
anybody who might want to experiment with it.

¤ The Squeak VM is also open source; the program
is written in a subset of Smalltalk and
automatically translated to C. This means that it
is feasible to modify the BabyIDE VM if
necessary.

6D1 The BabyIDE Layered Architecture

Classes and metaclasses come in pairs in regular
Smalltalk. The class object holds the properties of
its instances. The corresponding metaclass is
needed to hold the features of the class object
itself such as static attributes and methods. Many
Smalltalk novices find it hard to distinguish
between regular and static attributes and methods.
In BabyIDE, I initially remove the notion of static
attributes and methods from the core classes.
There is no loss of generality; I can always
implement the notions of shared features at a
higher abstraction level. The result is a set of clear
core constructs that let me explore new languages
and tools for my new discipline of programming.

5/8/2007 11:20 AM 32 of 39 Reenskaug

M0 - MetaMetaclass layer: There is a single object in
this layer; it is called MetaMetaclass. Directly or
indirectly, all BabyIDE objects are instances of
this class. MetaMetaclass is an instance of itself so
it had to be created by a somewhat tricky
program.

Fig. 29: The BabyIDE Instantiation Architecture

MetaMetaclass layer

Class layer

Metaclass layer

«instance of»

«instance of»

«instance of»

NonClass layer

M0

M1

M2

M3

Note that the BabyIDE layered architecture is an
instantiation hierarchy, the implementation of the
<2232>actD object with its class and metaclasses is
shown in figure 30.

Fig. 30: The example instantiation structure

«instance of»

«instance of»

M0

M1

M2

M3

«instance of»

«instance of»
<0942>

MetaMetaclass

<0101>
MetaSimpleclass

<0148>
Activity

<2528>
Behavior

<2232>
actD

<0002>
Object

Every object is an instance of a class. This is
implemented by every object having a link to its
class object. The class is represented by an object
that has a link to its class object, the metaclass.
Finally, the metaclass object has a link to the
metametaclass which is an instance of itself. This
idea of a layered architecture is fundamental to
BabyIDE semantics, but the exact number of
layers depends on circumstances. The core layers
from the concrete to the abstract are shown in
figure 29:

M3 - Non-class layer: Here are the non-class objects,
typically domain and support objects. The orthogonal class inheritance hierarchy is a

very powerful device for code reuse and code
sharing. Figure 31 shows the inheritance
hierarchy of the same network example. This
particular solution is not very interesting because
the inheritance hierarchy can be refactored
without changing the system semantics. We
particularly notice that it bears no relationship to
the instantiation hierarchy of figure 30.

M2 - Class layer: Here are the regular classes. Class
objects create new instances, act as repositories
for information common to these instances, and
know how to translate code from a human form
to executable binary.

M1 - Metaclass layer: Metaclass objects are class
objects that have classes as their instances. They
serve as repositories for the features that are
common to their instances; i.e., a set of classes of
the same kind. This ensures that BabyIDE is
genuinely extendable because different sets of
classes can have different compiles, inspectors,
etc.

5/8/2007 11:20 AM 33 of 39 Reenskaug

Fig. 31: The example inheritance structure

<0942>
MetaMetaclass

<0101>
MetaSimpleclass

<0148>
Activity

<2528>
Behavior

Object
<0002>

The human mind is well equipped for dealing
with a hierarchy, but it finds it harder to handle
two of them simultaneously. BabyIDE will gain
its power and extensibility by exploiting both the

instantiation and the inheritance hierarchies. But
this should be isolated to the toolmaker’s domain;
application programmers should only see a single
hierarchy that supports powerful concepts
provided by the toolmakers.

6D2 Example implementation of the class
layer

Figure 32 shows the actual objects that represent
the <0148>Activity class. Note that I am using the
conceptual object notation for the objects. A
diagram showing all the objects would be a
complete mess.

Fig. 32: Implementation of the <0148>Activity class

5/8/2007 11:20 AM 34 of 39 Reenskaug

superclass = nil
format = 2

methodDict = {inspect ...

attributes= {}
className = #Object

<0002> Object

..
...
...

class «instanceOf»

superclass= <0002>
format = ...

methodDict = {frontLoad:...

attributes= {activityName...
className = #Activity

<0148> Activity

...
#compile:

#new

M2: class layer

superclass

«subclassOf»

...
#compile:

#new

M1: metaclass layer

superclass= <0002>
format = ...

methodDict = {new:, compile:,...

attributes= {activityName...
className = #Activity

<2528> Behavior

...

...

...

superclass
«subclassOf»

<2232> actD

class «instanceOf»

M3: Nonclass layer

superclass= <2528>
format = ...

methodDict = { ... }

attributes= {activityName...
className = #Activity

<0101> MetaSimpleclass

5/8/2007 11:20 AM 35 of 39 Reenskaug

Note that the <0148>Activity class object responds to
its own messages such as new and compile:. The
corresponding methods are found in the methodDict
of <2528>Behavior. Further note that
<0101>MetaSimpleclass responds to its own versions
of new and compile:. We have to look at the class of
<0101>MetaSimpleclass to find the corresponding

methods. They may or may not be identical to the
<0148>Activity methods.

The theory is simple, but the actual realization
gets rather complicated. It is a challenge to device
concepts and tools that leverage the potential
while hiding the complexity.

5/8/2007 11:20 AM 36 of 39 Reenskaug

7 CONCLUSION

The BabyUML vision is that I shall regain the
mastery of my programs by making them “so
simple that there are obviously no deficiencies”.
Early on, it became clear that a solution would
have to focus on the inter-object space where we
see the objects, the links between them and their
interactions. Role modeling provides abstractions
for explicitly describing those aspects of object
systems, but modeling is not coding. The missing
link was the bridge between the roles and the
classes.

In a conversation with Kai Fredriksen1, something
he said gave me an aha! The bridge is a query that
finds the object(s) currently playing the role! This
lead to the unification between the role and class
abstractions as depicted in figure 7.

I have done a quick Smalltalk implementation of
the activity network example of section 2 and
spent some time finding a neat way of storing and
accessing collaborations with their roles and
queries. This led to an interesting observation. An
object belongs on the memory heap because it is
meaningful until it is garbage collected. A
collaboration with its role/object mappings
appears to belong on the execution stack because
it is only meaningful during an actual interaction.
This observation could be the promising start of
an interesting investigation.

An early idea was that a database-oriented
architecture can be applied to the interior of a
composite object. Figure 9 depicts the architecture
of the Autokon CAD/CAM system that we
deployed at the Norwegian Stord Yard in 1963. I
believe this was the world’s first software product
with a database-oriented architecture, and it
would be gratifying if the DCA paradigm will

1 See [21].

prove to be the world’s first application of the
same architecture in the context of an object.

The MVC has been well known since Jim Althoff
and others implemented their own version in the
Smalltalk-80 class library. In section 4, I have for
the first time described my original MVC idea
roughly as it was presented in the original
technical notes at Xerox PARC. [10]

The end result of the BabyUML project shall be
BabyIDE, a new interactive development
environment with appropriate languages and tools
for supporting the BabyUML high level
abstractions. The role/class unification, the DCA
architecture of complex objects, and the MVC as
described here form a foundation for further
experiments. What remains to be done is to
specify, design, and implement BabyIDE. Its top
level architecture is compactly expressed in
figure 12, where the computer acts as an
extension of the user’s brain. Seen in this
perspective, application programmers are the
users of the tools that shall be created in the next
experiment. The MVC and DCA paradigms will
be the metamodels of the programmer’s
perception of a program and the corresponding
program descriptions in the computer. This will
give added leverage, improved program
readability, and reduced program volume. MVC
and DCA are but examples; BabyIDE shall be
extensible so that it can support many different
paradigms, making it an example of Coplien’s
multi paradigm design. [22]

A first experiment was to naïvely instantiate the
UML metaclasses to get the run-time objects in
my stored program object computer. This
experiment failed as described in section 6C.

5/8/2007 11:20 AM 37 of 39 Reenskaug

A second experiment was to implement my own
versions of class and method objects in Smalltalk.
This forced me to go deeply into the nature of
objects and the fundamental difference between
instantiation and generalization. The result was
the BabyIDE laboratory as reported in section 6.
This laboratory forms a powerful and
conceptually simple foundation for further
development.

I tried to continue the second experiment by
populating the BabyIDE laboratory with high
level programming tools, but quickly realized that
I could not design and build the tools before I
fully understood what they were to achieve, i.e.,
the interacting run-time objects.

The third experiment was done in order to create
concrete examples of the desired results of the
initial BabyIDEs. This activity network
experiment was done in Java for two reasons. One
was to decouple IDE issues from the structures
themselves. The other was to communicate some

of the BabyUML ideas to a broader community.
The result was the MVC and DCA paradigms
reported in sections 4 and 5. I believe these
paradigms have a value in themselves in addition
to being input to the next BabyIDE experiment.

The results of the fourth experiment will be
decisive. In it, I will return to the BabyIDE
laboratory and create high level tools for
programming and documenting systems that
follow paradigms such as DCA and MVC. I will
clearly need to harness imperative, algorithmic
programming as well as the declarative definition
of data structures and queries. I will need class
oriented programming to define the nature of the
objects and I will need role model programming
to define their interaction. I will also need new
debuggers and inspectors to close the loop of
figure 22. A great deal of work is needed, and it is
probably far in excess of what can be achieved by
a single programmer (me) working alone. So I
hope that other people will be inspired to pick up
the loose ends from my ideas and experiments to
create new and interesting results. There might
even be an adventurous person who will join me
in realizing the BabyIDE vision.

5/8/2007 11:20 AM 38 of 39 Reenskaug

8 REFERENCES

1 James S. Huggin. J. S. First Computer Bug.
[web page] http://www.jamesshuggins.com/h/tek1/
first_computer_bug.htm

2 Naur, P.; Randell, B. (Ed) Software
Engineering. Report on a conference sponsored
by the NATO Science Committee. Garmisch,
October 1968. Scientific Affairs Division, NATO,
Brussels 39, Belgium. p 16.

3 Hoare, C. A. R.: The Emperor's Old Clothes.
1980 Turing Award lecture. Comm.ACM vol24-
81, 2 (Feb. 1981)
4 Dijkstra, E. D. 1930–2002. Structured
programming. E. W. Dijkstra Archive, University
of Texas, Document EWD268 [web page]
http://www.cs.utexas.edu/users/EWD/transcriptions/E
WD02xx/ EWD268.html

5 Dijkstra, E. D. The next fifty years. E. W.
Dijkstra Archive, University of Texas, Document
EWD1243a. [web page]
http://www.cs.utexas.edu/users/EWD/transcriptions/E
WD12xx/EWD1243a.html

6 Reenskaug, T.; Wold, P.; Lehne, O.A.
Working with objects. The OOram Software
Engineering Method; Manning; Greenwich, CT,
1996; Out of print. Early version at [web page]
http://
heim.ifi.uio.no/~trygver/1996/book/WorkingWithObject
s.pdf

7 UML Superstructure Specification, v2.0;
OMG, Needham, MA; 2005. [web page] http://
www.omg.org/cgi-bin/doc?formal/2005-07-04

8 Reenskaug, T. Applications and
Technologies for Maritime and Offshore
Industries. In Bubenko, J. A. Jr.; Impagliazzo, J.;
Sølvberg, A.; Eds.; History of Nordic Computing;
ISBN 0-387-24167-1, ISSN 1571-5736 (Print),
1861-2288 (Online); Springer; Boston, MA, 2005;
pp 369-390. [Weblink] http://dx.doi.org/10.1007/0-
387-24168-X_34

9 Goldberg, A,; Robson, D. Smalltalk-80. The
language and its implementation; ISBN 0-201-
11371-6; Addison-Wesley; Reading, MA, 1983
10 Reenskaug, T. (1979) The original MVC
reports. [web page] http://urn.nb.no/URN:NBN:no-
14314

11 Birtwistle, G. M.; Dahl, O.; Nygaard, K.
Simula begin. ISBN 91-44-06211-7;
Studentlitteratur; Lund, Sweden, 1973.
12 Reenskaug, T. Prokon/Plan. A Modelling
Tool for Project Planning and Control. In
Gilchrist, B.; Ed.; Information Processing 77,
Proceedings of the IFIP Congress 77; North-
Holland; Amsterdam, Holland, 1977; pp 717-721

13 Wirfs-Brock, R.; McKean, A. Object Design.
Roles, Responsibilities, and Collaborations. ISBN
0-201-37943-0; Addison-Wesley; Boston, MA,
2003.
14 Wirfs-Brock, R. J.; Johnson, R. E. Surveying
Current Research in Object-Oriented Design.
Comm ACM. 33 9 (Septeber 1990) 104-124.
15 Reenskaug, T.; et.al. ORASS: seamless
support for the creation and maintenance of
object-oriented systems. JOOP, 5 6 (October
1992), 27-41.
16 Andersen, E. P. Conceptual Modeling of
Objects. A Role Modeling Approach. D.Scient
thesis, November 1997, University of Oslo. [web
page] http://heim.ifi.uio.no/~trygver/1997/
EgilAndersen/ConceptualModelingOO.pdf]

17 Gamma et.al. Design Patterns; ISBN 0-201-
63361-; Addison-Wesley, Reading, MA. 1995.
18 Krasner, G.; Pope, S.T. A Cookbook for
Using the Model-View Controller User Interface
in Smalltalk-80. JOOP 1 3(Aug./Sept. 1988), 26-
49

5/8/2007 11:20 AM 39 of 39 Reenskaug

19 IFIP-ICC Vocabulary of Information
Processing; North-Holland, Amsterdam, Holland.
1966.
20 Sun Microsystems. The Java tutorial, What
is an object. [web page] http://java.sun.com/docs/
books/tutorial/java/concepts/object.html

21 Fredriksen, K. UMLexe - UML virtual
machine : a framework for model execution.
M.Sc. thesis, University of Oslo, 2005. [web
page] http://urn.nb.no/URN:NBN:no-14309

22 Coplien, J. Multi Paradigm Design for C++;
ISBN: 0-201-82467-1; Addison-Wesley
Professional, 1998,

23 Kiczales, G.; Lamping, J.; Mendhekar, A.;
Maeda, C.; Lopes, C., V.: Loingtier, J.; Irwin, J.
(1997) Aspect-Oriented Programming. In Goos,
G.; Hartmanis, J.; van Leeuwen, J. (Eds.) Proc.
ECCOP 1977; Springer-Verlag 1997; ISSN 302-
9743, DOI 10.1007/BFb0053371, ISBN 3-540-
63089-9

24 Hysing, T.; Reenskaug, T. A System for
Computer Plate Preparation. Numerical Methods
Applied to Shipbuilding. A NATO Advanced
Study Institute. Oslo-Bergen, 1963.

25 Squeak. [web page] http://www.squeak.org/

ACKNOWLEDGEMENTS

The idea and implementation of the Smalltalk
stored program object computer is due to Alan
Kay, Dan Ingalls, Adele Goldberg and the
Learning Research Group at Xerox PARC. UML
is the combined result of a great number of
people. Taken together, they have unified and
documented a large number of powerful concepts
for modeling large systems of interacting objects.
I am grateful to Dan Ingalls for helping me create
my own class, metaclass, metametaclass and
method objects in Squeak. Many thanks to Ragnar
Norman for sharing his deep understanding of
database technology and for helping me force my
brain to think in declarative terms without
immediately translating to my usual imperative
style. (I apologize for any misrepresentations of
his advice). My sincere thanks to Johannes
Brodwall for his intelligent support and advice on
Java technology. I also thank Øystein Haugen for
his thorough commenting of an earlier draft of
this chapter.

