
DCI: Practical Tips and
Lessons for Nerds

Jim Coplien
Gertrud & Cope
Mørdrup, Denmark

With warm acknowledgment of
Steen Lehmann’s Ruby code

Thanks to...

Trygve Reenskaug

Steen Lehmann

Rickard Öberg

Serge Beaumont

Gertrud Bjørnvig

Sadek Drobi

Languages

Scala
Python
C#
Javascript (Hi, Alan!)
C++
Java (Qi4J)
Ruby
PHP

Two kinds of OO
Concern

User Goal

Requirements

Technology

Design focus

Scope

Interaction

Example

Atomic Event DCI Architecture
Direct manipulation of

a domain object
A sequence of tasks

toward a goal
State machine, custom

formalism
Use Case

Good old OO Multiparadigm design
DCI

Form of the data Form of the algorithm

Single primary object
or small static network

of objects

Multiple objects with
dynamic associations

Non-verb Verb-noun

Delete character
Print balance

Spell check
Money transfer

The process

Behavior
Analysis

Event-
Based

Use
Cases

Domain
Analysis

Habits

Classes

Roles

Algorithms

© Trygve Reenskaug 20092009.11.06 Øredev Slide 11/06/09 11:31 AM

System Operations
Separation of Concern

© Trygve Reenskaug 20092009.11.06 Øredev Slide 11/06/09 11:31 AM

System Operations
Executed by Contexts

A & D Concepts

Use Cases: collections of scenarios between objects
that achieve a goal in context
Habits: Recurring Use Case fragments that lack a
goal (e.g., “login”)
Event-Based: Atomic operations without a goal (e.g.,
“change color”)
Roles: Collections of related responsibilities
Classes: Templates for dumb domain objects
Algorithms: Steps that reflect sequencing
constraints imposed by the implementation

Analysis: includes
considered harmful

A Use Case is best understood in terms of a business
goal

People have business goals; machine processes rarely
do

Therefore, a Use Case is best-suited to a human/
computer interaction with a goal

Breaking down Uses Cases causes some part of them
to lose the goal

Recurring fragments become habits

Domain Modeling: To
Dumb Code

class SavingsAccount < Account

!# We will associate SavingsAccount with
!# TransferMoneySink at run time as needed

!def initialize(accountID, initialBalance)
!! super(accountID, initialBalance)
!end
!private :initialize

!def availableBalance; @balance; end
!def decreaseBalance(amount); @balance -= amount; end
!def increaseBalance(amount); @balance += amount; end
!def updateLog(message, time, amount)
!!. . . .
!end
end

Basic DCI: Class
Composition

 class TransferMoneyContext

 def initialize(amt, sourceID, sinkID)
!!@source_account = Account.find(sourceID)
!!@source_account.extend TransferMoneySource

!!@destination_account = Account.find(destID)
!!@amount = amt
end

. . . .

In C++

 class SavingsAccount: public
! TransferMoneySource<SavingsAccount>
{
public:
 void decreaseBalance(Currency amount) {
!!
! }

};

Use Case to Algorithm

A Methodful Role

module TransferMoneySource
 include ContextAccessor

! # Role behaviors

 def transferTo
 raise "Insufficient funds" if balance < context.amount
 withdraw context.amount
 context.source_account.deposit context.amount
 self.updateLog "Transfer Out", Time.now, context.amount
 context.source_account.updateLog
!!! "Transfer In", Time.now, context.amount
 gui.displayScreen SUCCESS_DEPOSIT_SCREEN
 endTransaction
 end

end

No problem in C++

void transferTo(Currency amount) {
!!// This code is reviewable and
!!// meaningfully testable with stubs!
!!beginTransaction();
!!if (SELF->availableBalance() < amount) {
!!! endTransaction();
!! !throw InsufficientFunds();
!!} else {
!!! SELF->decreaseBalance(amount);
!!! RECIPIENT->increaseBalance (amount);
!!! SELF->updateLog("Transfer Out", DateTime(),
!!!!! amount);
!!! RECIPIENT->updateLog("Transfer In",
!!!!! DateTime(), amount);
!!}!!!
!!gui->displayScreen(SUCCESS_DEPOSIT_SCREEN);
!!endTransaction();

“Calling” a context

 def payBills
 # Assume that we can round
 # up the creditors
! creditors.each do |creditor|
! # transfer the funds here
 end

The Context class
class TransferMoneyContext
!attr_reader :source_account :destination_account,:amount

!def self.execute(amt, sourceID, sinkID)
!!TransferMoneyContext.new(amt, sourceID,!
!!!!! sinkID).execute
end
def initialize(amt, sourceID, sinkID)
!!@source_account = Account.find(sourceID)
!!@source_account.extend TransferMoneySource

!!@destination_account = Account.find(destID)
!!@amount = amt
end
def execute
!!execute_in_context do!
!! !source_account.transferTo
!end

end!

“Calling” a context

 def payBills
 # Assume that we can round
 # up the creditors
! creditors = context.creditors.dup
 creditors.each do |creditor|

! TransferMoneyContext.execute(
 creditor.amount_owed,
!!!!account_id,
!!!!creditor.account.account_id)
 end

“Calling” a context

A natural fit to habits

Effectively the include relationship of Use
Cases

More than a subroutine call — includes role /
object bindings

Accounts may not be
Accounts

Accounts are objects, right?

Not really... the objects are transaction logs
and audit trails

Q: What is an Account? It IS part of the
end user mental model, right?

A: Account is a Context

ghgdefdef

Dwellings

It’s clean code

Architectural expressiveness only moderately
better

Maintainability radically better: a subtle
effect

I’m becoming more and more convinced of
the need for a supporting environment

Questions?

cope@gertrudandcope.com

http://www.gertrudandcope.com-
a.googlepages.com/thedciarchitecture

