
Version of July 16, 2014 3:32 pm Page 1 DCI-Glossary.fm

D C I G l o s s a r y
Trygve Reenskaug with lots of assistance from

the Object Composition Group
July 16 2014

The purpose of this Glossary is to encourage people to use the same terms for the same con-
cepts. The glossary is not a textbook; a prior understanding of DCI is assumed. There are plenty
of background sources; the Wikipedia[Wikipedia] article on DCI is a good starting point

Background terminology

A Mental Model can be defined as an explanation in someone's thought process for how some-
thing works in the real world [Wikipedia]. A human can have many mental models in his or her
mind simultaneously and is very good at switching between them as the need arises. Most of
these models are intuitive, but a few are concrete and expressible in some language.

There are two aspects of mental models that are of interest here. One aspect is the user’s knowl-
edge of how to operate the computer by giving commands and interpreting the results. Such
interaction is symbolized by a solid line in the figure below and is related to what the system
does.

Another and equally important aspect is the user’s understanding of the information model involved in
whatever task the user is working on. This aspect of the mental model relates to what the system is. The
corresponding data model in the computer may or may not be similar to the user’s information model.
The data model exists concretely in the computer hardware, but the user can only perceive it indirectly
through exploration of the user interface. The ideal is that user’s information model magically corre-
sponds to the computer’s data model. This ideal situation is symbolized by the dashed line in the figure.

Alan Kay introduced the term object orientation as a common tool for thinking about how
things work as well as how we can make things work in the computer. The following quote is
coached in terms of Smalltalk programming, but the idea is applicable to describing computer
programs well as human mental models:

“In computer terms, Smalltalk is a recursion on the notion of computer itself. Instead of
dividing “computer stuff” into things each less strong than the whole--like data structures,
procedures, and functions which are the usual paraphernalia of programming
languages--each Smalltalk object is a recursion on the entire possibilities of the computer.
Thus its semantics are a bit like having thousands and thousands of computers all hooked
together by a very fast network. Questions of concrete representation can thus be postponed
almost indefinitely because we are mainly concerned that the computers behave
appropriately, and are interested in particular strategies only if the results are off or come
back too slowly.

Though it has noble ancestors indeed, Smalltalk's contribution is a new design
paradigm--which I called object-oriented--for attacking large problems of the professional
programmer, and making small ones possible for the novice user. Object-oriented design is
a successful attempt to qualitatively improve the efficiency of modeling the ever more

Version of July 16, 2014 3:32 pm Page 2 DCI-Glossary.fm

complex dynamic systems and user relationships made possible by the silicon explosion.”
Kay-93

The ‘computers’ in Kay’s definition are objects. At Xerox PARC, the Smalltalk group’s defini-
tion was: “An Object is an entity that has identity and that encapsulates state and behavior”.
The identity is immutable; it can be shared and communicated so that it is meaningful to reason
about networks of communicating objects. Encapsulation means that there is a clear distinction
between an object’s external properties and its internal construction. Externally, an object is
characterized by its provided interface, i.e., the set of messages that the object can receive. Its
internal construction (its class) is irrelevant to the object’s collaborators as long as the object
behaves appropriately. The notion of object orientation is recursive since an object can encap-
sulate an inner network of communicating objects.

A very important goal for DCI is to give the user an illusion of working directly with his or her
mental model when working with the computer. Object orientation is the key to the DCI way of
achieving this goal. The data model can be implemented in the computer as a structure of
objects. The user’s mental information model can be a similar, often intuitive, object model.
With DCI, system behavior is implemented as interacting roles within a Context. The user can
similarly explain what the system does in terms of interacting roles.

With DCI, the boundary between user and computer fades away; the computer acts as an exten-
sion of the user’s mind. This magic supports the “no surprises” principle and is illustrated with
a dashed line in the above figure.

The DCI Glossary

The following defines terms for important concepts in DCI. The definitions are based on regular
English and the terms defined in Background terminology above.

The terms related to the system’s handling of a Use Case are of special interest:

Use Case
→ Scenario

→ Command
→ System Operation

→ Context
→ Role

→ RoleMethod

Command A user input that triggers the execution of a System Operation. Part of
a Scenario.

CRC Cards Candidate (role), Responsibility, Collaboration (CRC) cardsCRC are a
brainstorming tool that can be used for determining the Roles and their
collaboration structure in the implementation of a System Operation.
These CRC cards are an object oriented refinement of the original,
class oriented cards.

Version of July 16, 2014 3:32 pm Page 3 DCI-Glossary.fm

Context A Context implements one or more System Operations.

The static (class) side of a Context specifies networks of
communicating objects as similar structures of interconnected Roles.
Object identity is represented by the Role’s position in the structure.

A Context method coherently maps all the Roles onto objects, keeping
the result in the RoleMap of the Context instance.

Data The DCI Data objects are the objects of the user’s mental model.
Examples are domain objects, MVC[MVC] model objects, and database
objects.

DCI A paradigm defining a program architecture where a program is seen
in different perspectives. Each perspective is a filter that exposes
certain properties of the program and hides the rest. The essential
perspectives are Data, Context, and Interaction

Habit A Habit is like a Use Case, but one that is the purview of the
programmer rather than the end users. See Coplien-Bjørnvig p 183. A Habit
does not in itself achieve a business goal.

Injection RoleMethod injection is a mechanism that maintains the invariant: “For
any given Role, its RoleMethods are shared among all its RolePlayers.”

Interaction In DCI, specification of how a network of communicating objects realize
a System Operation. The network nodes are RolePlayers; their
behaviors are specified in their RoleMethods. (Note that in some
Use Case methods, the term ‘interaction’ refers to the interaction between
actors and the system under discussion.)

Role A Role is an alias for an object in a network of interacting objects within
a Context instance.

A Role is an abstraction that highlights an object’s identity and external
properties while it ignores the object’s internal construction.

A Role has a responsibility that is part of the responsibility of the
enclosing Context instance.

The Role forms a bridge between the compile time and the runtime
properties of a system.

A Role explicitly or implicitly specifies a RoleObjectContract that must
be provided by all its RolePlayers.

RoleObjectContract An assurance in some form (depending on programming language)
that only objects reifying a required set of messages can play a certain
Role.

RoleMap Every Context instance has a RoleMap that maintains the current
mapping between Roles and RolePlayers.

RoleMethod A stateless method that is a feature of a Role and that is shared among all
the Role’s potential RolePlayers.

Polymorphism does not apply to these methods; RoleMethods have
priority over methods specified in the RolePlayer instances.

An executing RoleMethod can access its actual parameters and
temporary variables. It can also access the current RolePlayer and the
current Context.

RolePlayer An object that fills the position of a Role in a network of communicating
objects. Examples are Data objects and other objects that participate in
an Interaction. The object must provide the Role’s RoleObjectContract.

Version of July 16, 2014 3:32 pm Page 4 DCI-Glossary.fm

References.

Scenario A scenario is a narrative describing foreseeable interactions of types of
users (characters) and the system. Scenarios include information
about goals, expectations, motivations, actions and reactions.
Scenarios are neither predictions nor forecasts, but rather attempts to
reflect on or portray the way in which a system is used in the context of
daily activity.[Wikipedia]

A Scenario is non-branching; conditionals are expressed using
alternative flows. A Scenario entails one or more user Commands as
part of the interplay between user and computer. Coplien-Bjørnvig pp 167ff

System Operation A System Operation is behavior implemented by a Context.

A System Operation is always executed within a Context instance and
is realized as an Interaction within this Context.

Use Case A use case is a description of a potential series of interactions between
program and a user, which lead the user towards a business goal.

The potential series of interactions are described in a series of
Scenarios. (Note that ‘interaction’ here has a different meaning from the DCI
Interaction.)

Coplien-Bjørnvig Coplien, J. O., Bjørnvig, G; Lean Architecture for Software
Development; ISBN 978-0-470-68420-7; Wiley, Chichester, United
Kingdom, 2010.

CRC R. Wirfs-Brock, A. MacKean: Object Design. Roles, Responsibilities,
and Collaborations; ISBN 0-201-37943-0; Addison-Wesley, Boston, MA
2003.

Kay-93 Alan Kay: The Early History of Smalltalk; ACM SIGPLAN Notices
archive; 28, 3 (March 1993);p.70; An HTML copy at [web page]
http://c2.com/cgi/wiki?EarlyHistoryOfSmalltalk and

http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_TOC.html

[MVC] Reenskaug, T.; The original MVC reports; [web page]
http://www.duo.uio.no/sok/work.html?WORKID=52648

Reenskaug, T.; The Model-View-Controller (MVC). Its Past and
Present. Dept. of Informatics, University of Oslo; August 2003; [web
page] http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf

[Wikipedia] WikipediA, the free enceclopedia. [web page]
http://en.wikipedia.org/wiki/Main_Page

http://c2.com/cgi/wiki?EarlyHistoryOfSmalltalk
http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_TOC.html
http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf
http://www.duo.uio.no/sok/work.html?WORKID=52648
http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf
http://en.wikipedia.org/wiki/Main_Page

