Contact information

•  U. S. Fjordholm. Sharp uniqueness conditions for onedimensional, autonomous ordinary differential equations. To appear in: Comptes Rendus Mathématique, 2018. [arXiv] [doi]  
•  N. Chatterjee and U. S. Fjordholm. A convergent finite volume method for the Kuramoto equation and related nonlocal conservation laws. Submitted for publication, 2018. [arXiv]  
•  J. A. Carrillo, U. S. Fjordholm and S. Solem. A secondorder numerical method for the aggregation equations. Submitted for publication, 2018. [arXiv]  
•  U. S. Fjordholm, S. Mishra and K. O. Lye. Numerical approximation of statistical solutions of scalar conservation laws. Submitted for publication, 2017. [arXiv] 
•  U. S. Fjordholm. Stability properties of the ENO method. In Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues, volume 17 of Handbook of Numerical Analysis, page 123–145. 2016. [errata] [arXiv] [doi] [bibtex] 
[14]  U. S. Fjordholm and E. Wiedemann. Statistical solutions and Onsager's conjecture. Physica D, 376–377:259–265, 2018. [errata] [arXiv] [doi] [bibtex]  
[13]  U. S. Fjordholm, R. Käppeli, S. Mishra and E. Tadmor. Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math., 17(3):763–827, 2017. [arXiv] [doi] [bibtex]  
[12]  U. S. Fjordholm, S. Lanthaler and S. Mishra. Statistical solutions of hyperbolic conservation laws I: Foundations. Arch. Ration. Mech. An., 226(2):809–849, 2017. [arXiv] [doi] [bibtex]  
[11]  U. S. Fjordholm and S. Solem. Secondorder convergence of monotone schemes for conservation laws. SIAM J. Numer. Anal., 54(3):1920–1945, 2016. [arXiv] [doi] [bibtex]  
[10]  U. S. Fjordholm, S. Mishra and E. Tadmor. On the computation of measurevalued solutions. Acta Numer., 25:567–679, 2016. [doi] [bibtex]  
[9]  P. Chandrashekar, U. S. Fjordholm, S. Mishra and D. Ray. Entropy stable schemes on twodimensional unstructured grids. Commun. Comput. Phys., 19(5):1111–1140, 2016. [doi] [bibtex]  
[8]  U. S. Fjordholm and D. Ray. A sign preserving WENO reconstruction method. J. Sci. Comput., 68(1):42–63, 2016. [arXiv] [doi] [bibtex]  
[7]  U. S. Fjordholm and S. H. Zakerzadeh. Highorder accurate, fully discrete entropy stable schemes for scalar conservation laws. IMA J. Numer. Anal., 36(2):633–654, 2016. [doi] [bibtex]  
[6]  U. S. Fjordholm, S. Mishra and E. Tadmor. ENO Reconstruction and ENO Interpolation Are Stable. Found. Comput. Math., 13(2):139–159, 2013. [errata] [arXiv] [doi] [bibtex]  
[5]  M. J. Castro, U. S. Fjordholm, S. Mishra and C. Parés. Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems. SIAM J. Numer. Anal., 51(3):1371–1391, 2013. [doi] [bibtex]  
[4]  U. S. Fjordholm, S. Mishra and E. Tadmor. Arbitrarily high order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal., 50(2):544–573, 2012. [doi] [bibtex]  
[3]  U. S. Fjordholm and S. Mishra. Accurate numerical discretizations of nonconservative hyperbolic systems. M2AN, 46(1):187–206, 2012. [doi] [bibtex]  
[2]  U. S. Fjordholm, S. Mishra and E. Tadmor. Wellbalanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys., 230(14):5587–5609, 2011. [doi] [bibtex]  
[1]  U. S. Fjordholm and S. Mishra. Vorticity preserving finite volume schemes for the shallow water equations. SIAM J. Sci. Comput., 33(2):588–611, 2011. [doi] [bibtex] 
[3]  U. S. Fjordholm. Energy conservative and stable schemes for the twolayer shallow water equations. In Hyperbolic Problems. Theory, Numerics and Applications, volume 18 of Series in Contemporary Applied Mathematics, page 414–421. 2012. [doi] [bibtex]  
[2]  U. S. Fjordholm, S. Mishra and E. Tadmor. Entropy Stable ENO Scheme. In Hyperbolic Problems. Theory, Numerics and Applications, volume 17 of Series in Contemporary Applied Mathematics, page 12–27. 2012. [doi] [pdf] [bibtex]  
[1]  U. S. Fjordholm, S. Mishra and E. Tadmor. Energy preserving and energy stable schemes for the shallow water equations. In Foundations of Computational Mathematics, Hong Kong 2008, volume 363 of London Math. Soc. Lecture Notes Series, page 93–139. 2009. [doi] [pdf] [bibtex] 
•  U. S. Fjordholm. Highorder accurate entropy stable numerical schemes for hyperbolic conservation laws. PhD thesis, ETH Zürich, 2013. [doi] [bibtex] 
•  U. S. Fjordholm. Structure preserving finite volume methods for the shallow water equations. Master's thesis, University of Oslo, 2009. [pdf] [bibtex] 