Recombination and lifetime
Main question

Will this wafer make a good solar cell?
Where are we?

\[J_n(x) \rightarrow G_n(x) \rightarrow U_n(x) \rightarrow J_n(x + dx) \]

\[dV \]

\[dx \]
Continuity equation

- Assuming uniform generation and no net charge transport (disregarding surface recombination) within the semiconductor:

\[
\frac{d\Delta n(t)}{dt} = G(t) - U_{\text{eff}} = G(t) - \frac{\Delta n}{\tau_{\text{eff}}}
\]

- Solving for \(\tau_{\text{eff}} \) yields:

\[
\tau_{\text{eff}}(\Delta n) = \frac{\Delta n(t)}{G(t) - \frac{d\Delta n(t)}{dt}}
\]

More generally, see: Nagel et al, “Generalized analysis of quasi-steady-state…”, JAP, 1999
Continuity equation – steady state

• The photoluminescence intensity is detected with constant excitation over a long time, so we can assume steady state.

• In steady state ($d\Delta n/dt=0$), the generation rate G and recombination rate U are balanced:

$$G = U_{eff} = \frac{n}{eff} \Rightarrow eff = \frac{n}{G}$$

• Need to know Δn and G to determine the effective lifetime.
Recombination processes

$U_n(x)$

- **RADIATIVE (BAND-TO-BAND)**
- **SHOCKLEY-REED-HALL**
- **AUGER**
Bulk recombination – simplified equations

\[U_{\text{rad}} \]
\[U_{p,\text{rad}} = \frac{\Delta n}{\tau_{p,\text{rad}}} \]
\[\tau_{p,\text{rad}} = \frac{1}{(B_{\text{rad}} \cdot N_a)} \]

\[U_{\text{Aug}} \]
\[U_{p,\text{Aug}} = \frac{\Delta n}{\tau_{p,\text{Aug}}} \]
\[\tau_{p,\text{Aug}} = \frac{1}{(A_p \cdot N_a^2)} \]

\[U_{\text{SRH}} \]
\[U_{p,\text{SRH}} = \frac{\Delta n}{\tau_{p,\text{SRH}}} \]
\[\tau_{p,\text{SRH}} = \frac{1}{(B_{p,\text{SRH}} \cdot N_t)} \]
Effective lifetime

- Several recombination mechanisms will occur simultaneously in any given material
- The total effective lifetime is given by the inverse sum of the separate lifetime contributions

\[
(\tau_{\text{eff}})^{-1} = (\tau_{\text{mech1}})^{-1} + (\tau_{\text{mech2}})^{-1} + (\tau_{\text{mech3}})^{-1} + \ldots
\]

- Mostly, one or a few recombination processes with low associated lifetimes will dominate
Bulk lifetime in silicon

Bentzen: PhD thesis
Surface recombination

- A surface is an extended defect
 - Introduces states in the band gap
 - Dangling bonds
 - Impurities
- Most often described using a surface recombination velocity (S) and a recombination flux
- Formalism analogous to SRH
Surface recombination

\[U_{\text{surf}} \cdot \delta x = \frac{n_{\text{surf}} p_{\text{surf}} - n_i^2}{(1/S_n)(p_{\text{surf}} + p_t) + (1/S_p)(n_{\text{surf}} + n_t)} \]
Surface recombination

\[U_{\text{surf}} \]

\[U_{p,\text{surf}} \cdot \delta x = S_p \cdot \Delta n \]

\[S_p = B_n \cdot N_t \]
Surface recombination current

- Surface recombination will contribute to the current densities at the surface

\[J_{p,\text{surf}} = q \cdot \int U_{p,\text{surf}} \cdot \, dx = q \cdot S_p \cdot \Delta n \]

\[J_{n,\text{surf}} = -q \cdot \int U_{n,\text{surf}} \cdot \, dx = q \cdot S_n \cdot \Delta n \]
Surface recombination and lifetime

- Surface recombination must be considered when measuring lifetime.

\[
\frac{1}{\tau_{\text{eff}}} = \frac{1}{\tau_{\text{bulk}}} + \frac{1}{\tau_{\text{surf}}}
\]

- If \(S \) is too high compared with \(\tau_{\text{bulk}} \), \(\tau_{\text{eff}} \) will be determined only by the surface recombination.
Surface recombination and lifetime
Surface recombination and lifetime

- For high values of S ($S \cdot d/D_n > 100$)

$$\frac{1}{\tau_{\text{eff}}} = \frac{1}{\tau_{\text{bulk}}} + D_n (\pi/d)^2$$

- All charge reaching the surface recombines
 - Exact value of S no longer important
 - Diffusion towards surface becomes limiting factor
- Validity of equation:
 - Diffusion constant (D_n) $\approx 30 \text{ cm}^2/\text{s}$
 - Wafer thickness (d) $\approx 300 \mu\text{m}$
 - Equation valid within $\sim 5\%$ as long as $S > 100\,000 \text{ cm/s}$

Rein: “Lifetime spectroscopy”
Surface recombination and lifetime

- For low values of S ($S \cdot d/D_n < 1/4$)

\[
\frac{1}{\tau_{\text{eff}}} = \frac{1}{\tau_{\text{bulk}}} + (2 \cdot S/d)
\]

- Limited by recombination at surface
- Validity of equation:
 - Diffusion constant (D_n) \(\approx 30 \text{ cm}^2/\text{s} \)
 - Wafer thickness (d) \(\approx 300 \mu\text{m} \)
 - Equation valid within \(\sim 5\% \) as long as $S < 250 \text{ cm/s}$

Rein: "Lifetime spectroscopy"
Surface passivation

- Abrupt semiconductor surfaces: large S
- For lifetime measurements, low S is required
 - High quality bulk material

- Recipe
 - Remove surface damage
 - Clean surface thoroughly
 - Apply a suitable passivating film
 - SiO_2, $\text{a-SiN}_x: \text{H}$, a-Si:H, $\text{a-Al}_x\text{O: H}$...
 - Measure the lifetime
Diffusion length and lifetime

- The diffusion length (L) is defined as follows:
 \[L = (D \cdot \tau)^{1/2} \]

- L is a measure of the average distance a minority charge carrier is able to move without recombining.

- L is important in determining which solar cell structures can be realized from a given material.
Diffusion length and solar cell performance

\[L_n \geq W \]

\[L_n < W \]

\[L_n \ll W \]
The Einstein relation

- The Einstein relation relates minority carrier mobilities and diffusivities

\[\frac{kT}{q} = \frac{D}{\mu} \]

- Electrons
 - \(\mu = 1450 \text{ cm}^2/\text{V} \cdot \text{s} \)
 - \(D = 37.7 \text{ cm}^2/\text{s} \)
- Holes
 - \(\mu = 500 \text{ cm}^2/\text{V} \cdot \text{s} \)
 - \(D = 13.0 \text{ cm}^2/\text{s} \)
Diffusion length and lifetime

Diffusion length versus lifetime

Measured data from Wacker Siltronics
Lifetime measurements

- How do we measure the lifetime?
 - Photoconductance \((\sigma \sim \Delta n)\)
 - Photoconductance decay \((d\sigma/dt \sim d(\Delta n)/dt)\)
 - Radiative recombination \((I_{PL} \sim \Delta n)\)
 - IR-absorption by excited charge \((I_{fca} \sim \Delta n)\)
Lifetime measurements

• Which methods do we use to measure the lifetime?
 • Quasi-steady state photoconductance (QSSPC/«Sinton»)
 • Microwave detected photoconductance decay (μ-PCD)
 • Photoluminescence imaging (PL)
 • Carrier density imaging (CDI)

• Artifacts of lifetime measurements
 • Trapping

• Applications of lifetime measurements
Quasi-Steady State PhotoConductance

\[
\frac{d\Delta n(t)}{dt} = G(t) - U_{\text{eff}} = G(t) - \frac{\Delta n}{\tau_{\text{eff}}} = 0
\]

\[
\tau_{\text{eff}} = G(t) / \Delta n
\]
QSSPC

- Quasi-steady state: flash decay slow compared to lifetime

- Lifetime determined from excess carrier density in quasi-steady state

\[\tau_{\text{eff,QSSPC}} = \frac{\Delta n}{g_E} \]

- Excess carrier density linked to conductivity

\[\Delta n = \frac{\Delta \sigma(t)}{q(\mu_n + \mu_p)} W \]
QSSPC

Bentzen: PhD thesis
QSSPC

- Advantage
 - Measures lifetime as a function of injection level
 - Robust physical models
 - True lifetimes can be extracted

- Disadvantage
 - Usually measures across large area

Bentzen: PhD thesis
Microwave **photoconductance decay**

\[\frac{d\Delta n(t)}{dt} = G(t) - U_{\text{eff}} = G(t) - \frac{\Delta n}{\tau_{\text{eff}}} \]

\[\tau_{\text{eff}} = \frac{\Delta n}{\left(\frac{d\Delta n(t)}{dt} - G(t) \right)} = \frac{\Delta n}{\left(\frac{d\Delta n(t)}{dt} \right)} \]
μ-PCD

- Very short pulse applied to sample
 - Measures $d\Delta n(t)/dt$, not the steady state generation rate g_E

\[\tau_{\text{eff,u-PCD}} = \frac{\Delta n}{(d\Delta n(t)/dt)} \]

- Change in photoconductivity measured as microwave reflection

\[\frac{\Delta n}{(d\Delta n(t)/dt)} = \frac{\Delta \sigma(t)}{q(\mu_n + \mu_p)Wd\Delta n(t)/dt} \]
u-PCD – measurement examples

- When measuring thick samples, such as blocks, a long wavelength can be used
- Photogeneration far from surface
- Surface passivation not critical

- On wafers, surfaces are always close at hand
- A surface passivation is required
- Without passivation, the maximal measured lifetime only is a few µs
u-PCD

- **Advantage**
 - High spatial resolution obtainable

- **Disadvantages**
 - No implicit knowledge of injection level
 - Lifetime versus injection level requires adjustments of bias light
PhotoLuminescence imaging

\[\frac{d\Delta n(t)}{dt} = G(t) - U_{\text{eff}} = G(t) - \frac{\Delta n}{\tau_{\text{eff}}} = 0 \]

\[\tau_{\text{eff}} = G(t) / \Delta n \]
PL imaging

- **Method**
 - Relate measured luminescence signal from radiative recombination to Δn
 - Extract effective lifetime from ratio of Δn to generation rate G

\[
U_{rad} = B_{rad}(np - ni^2)
\]

\[
B_{rad} \Delta n (\Delta n + Na)
\]

\[
\tau_{eff} = \Delta n / G
\]
Generation rate

- Simple!
- Assume all photons entering the wafer are absorbed, and create an electron-hole-pair:

\[G = \frac{laser (1 - R_{808nm})}{W} \]

- Photon flux: \(10^{17}\text{cm}^{-2}\text{s}^{-1}\)
- Reflectance at excitation wavelength
- Thickness of wafer, assumed uniform distribution
Relation to excess charge carrier density

- Radiative recombination in (p-type) silicon:

\[R_{rad} = B_{rad} np \approx B_{rad} \left(N_A \cdot n + n^2 \right) \]

\[n \approx \int_0^z n(z) dz \]

- Including \(B_{rad} \), the effect of camera, filters, surface morphology in a calibration factor \(C \):

\[I_{\text{camera}}(n) \approx C \left(N_A \cdot n + n^2 \right) \]
Luminescence spectrum of silicon

- Band to band luminescence around 1000-1100nm
- Radiative (and non-radiative) defects yield dark signal since luminescence is outside detection limit (long-wavelength IR)
- High band-to-band luminescence signal means defects do not dominate
- Camera filters designed to filter out reflected laser light (~800 nm), and detect only band-to-band luminescence
Quasi-steady-state photoconductance

pvcdrom.pveducation.org

Bentzen: PhD thesis
Calibration of luminescence intensity to excess carrier density

- QSSPC measures conductivity and yields free carrier density given a mobility model
- Intensity vs. free carrier density
- Determines calibration constant C

$$I_{\text{camera}}(n) \approx C(N_A n + n^2)$$

Low injection, high doping

$$\approx CN_A n$$

- Now we can measure the PL intensity to get a map of Δn!
Complications

- Need to know doping – preferably have uniform doping…
 - Inhomogeneously doped wafers can show large variations in luminescence intensity
 - Minor effect on the conversion from conductivity to excess carrier density, due to mobility model
- QSSPC calibration over large area
 - Mobility models – compensated silicon
 - Need to take care for mc-silicon, averaged intensity
- Compensated silicon
 - Mobility model (as far as I know…) for QSSPC measurements still under discussion
 - Net doping variations will dominate the image
Complications

- Luminescence from emitters is usually neglected
- Reabsorption of luminescence photons
 - weak effect in the detected spectral range
- Uniformity of reflectance
 - Lifetime scales with reflectance
- Blurring if diffusion length is much longer than a pixel size (160 \text{um})
 - Small effect in solar grade silicon, limited to a few pixels
- Radiative recombination coefficient decreases at high injection level, screening effect
- Diffuse surfaces cause blurring
Effect of reflectance

- The generation rate G is not constant over the wafer
- Misinterpreted as lower lifetime, but also an actual decrease in passivation quality? Thickness?
- Partly corrected by having a laterally varying generation rate G
High-resolution PL of multicrystalline silicon

- As-cut wafer
 - Same surface treatment (except for a-Si deposition)
 - Blurring due to longer diffusion length?

- Passivated wafer
 - $L = \sqrt{D}$

Electrons:
- $D = 37.7 \text{ cm}^2/\text{s}$
- $\tau \sim 15 \text{ us}$
- $L \sim 200 \text{ um}$
Slip lines in monocrystalline silicon

- Slip lines
 - Crystal defects during growth
 - Can lead to breakage during wafering
Compensated silicon

- UMG material
- See large effects of doping, also an issue for QSSPC calibration
- Research ongoing to adapt technique for compensated material

Haunschild et al., 35th PVSEC, 20
The effect of non-recombinative traps

• Charge neutrality requires that

\[\Delta n = \Delta p \]

• Certain traps only store charge carriers for some time before re-releasing them to the nearest energy band

• With a number of electron traps \(n_t \), the conductivity becomes

\[\Delta \sigma(t) = q(\mu_n \Delta n + \mu_p \Delta p)W + qn_t \mu_n W \]

• This effect will lead to an \textbf{apparent} increase in lifetime
Trapping – calculated example

Bentzen: PhD thesis
Case 1: Counting dissolved impurities

- A lifetime determined by dissolved impurities can be described as follows:

$$\frac{1}{\tau} = \sigma_t v_{th} N_t$$

- Scattering cross section (σ_t)
- Thermal velocity of electrons (v_{th})
- Concentration of defects (N_t)

- If the lifetime is dominated by one defect with a known σ_t, the defect concentration can be estimated.
Case 2: Counting precipitates

- A lifetime determined by precipitates can be described by the following empirical equation:

\[L = 0.7 \cdot (N_p)^{-1/3} \]

- Precipitate density \((N_p)\)
- Hard in principle, lifetime usually limited by other factors

Luque & Hegedus: “PV Handbook”
Case 3: Determining Fe_i concentration in Si

- Fe is an important defect in mc-Si technology
- The concentration of Fe in B-doped Si can be determined by lifetime measurements
- Interstitially dissolved Fe (Fe_i^+) is a common “lifetime killer” in Si
- In p-Si, Fe_i^+ tends to pair up with B acceptors (B_s^-) forming so-called Fe-B pairs (FeB)
- FeB pairs can be split up by illumination into B_s^- and Fe_i^+
Case 3: Determining Fe\(_i\) concentration in Si

- Before illumination
 \[
 (\tau_{\text{before}})^{-1} = (\tau_{\text{surf}})^{-1} + (\tau_{\text{FeB}})^{-1}
 \]

- After illumination and pair separation
 \[
 (\tau_{\text{after}})^{-1} = (\tau_{\text{surf}})^{-1} + (\tau_{\text{Fe_i}})^{-1}
 \]

- Difference
 \[
 (\tau_{\text{after}})^{-1} - (\tau_{\text{before}})^{-1} = (\tau_{\text{Fe_i}})^{-1} - (\tau_{\text{FeB}})^{-1}
 \]