Extending Renegotiation-Proofness to Infinite Horizon Games*

GEIR B. ASHEIM

The Norwegian School of Economics and Business Administration, N-5035 Bergen-Sandviken, Norway

Received December 5, 1988

This paper extends the concept of a Pareto-perfect equilibrium to infinite horizon games, and offers a definition that covers both finitely and infinitely repeated games. An equilibrium is said to be Pareto-perfect if admitted by a Pareto-perfect social norm. A Pareto-perfect norm admits an equilibrium if and only if it cannot be profitably renegotiated in a norm-observing manner at a future contingency. The defined concept is compared to concepts that other writers have proposed. It departs from other concepts by insisting that nonviable equilibria be defeated through renegotiation by viable ones, and by not imposing a stationarity assumption. Journal of Economic Literature Classification Number: 026. © 1991 Academic Press, Inc.

1. INTRODUCTION

This paper extends the concept of a Pareto-perfect equilibrium (PPE) to infinite horizon games, and offers a definition that covers both finitely and infinitely repeated games. The present analysis builds on the important contributions by Bernheim and Ray (1989) (henceforth referred to as B&R) and Farrell and Maskin (1989) (F&M), but obtains a concept with different implications.

* This research was initiated during fruitful visits to the Universities of Bonn and Haifa, and grew out of discussions with Joseph Greenberg based on his Theory of Social Situations. I thank a referee and, especially, an associate editor for very constructive criticism. Thanks also to seminar participants at Bielefeld, Cambridge, LSE, Munich, Ohio State, Oslo, and Tel Aviv for helpful comments. Support by Stifterverband für die Deutsche Wissenschaft (Ruhrgas-Stipendium) and by Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 303) is gratefully acknowledged.
The underlying motivation for renegotiation-proofness is as follows: In an infinitely repeated game, a Subgame-perfect equilibrium (SPE) can be supported by the threat that a deviation by one player will trigger a grim continuation equilibrium unattractive to all players. However, allowing for renegotiation, the players will not submit to this grim equilibrium since they ex post favor returning to the original one. But then the threat supporting the original equilibrium is no longer credible. Hence, the question is: what SPEs are not subject to this criticism?

In finitely repeated games, a natural procedure is to determine viable continuation equilibria in the last stage by the Pareto-dominance refinement on the set of Nash equilibria, and then recursively determine viable continuation equilibria in earlier stages. This yields Pareto-perfect equilibrium (see Definition 1’ of Section 5).

In infinitely repeated games, such a recursion cannot be used. Instead F&M propose the concept of a Weakly renegotiation-proof (WRP) equilibrium (independently suggested by B&R and called Internally consistent by them). A WRP equilibrium \(\sigma \) is an SPE which does not have two continuation equilibria such that the players all prefer moving from the one to the other. This concept takes care of internal stability: for no history can the players profitably renegotiate to an SPE in the set of continuation equilibria of \(\sigma \). However, it lacks external stability: it is left completely unexplained why the players do not renegotiate to an SPE outside the set of continuation equilibria of \(\sigma \). In order to impose external stability, F&M suggest the alternative concept of a Strongly renegotiation-proof (SRP) equilibrium (being a WRP equilibrium which does not have a continuation equilibrium from which the players all prefer moving to some other WRP equilibrium), while B&R define the related concept of a Consistent equilibrium (yielding existence also when WRP equilibria upset each other cyclically). There are, however, grounds to question the definitions of SRP and Consistent equilibria (reproduced in Section 3) on various accounts. In particular,

1. these concepts may eliminate SPEs that are defeated through renegotiation only by equilibria that are themselves not viable;
2. being based on the concept of a WRP equilibrium, they impose a stationarity assumption, which may not be justified.

1 This terminology is taken from Bernheim and Ray (1985) where the concept was first suggested. However, Selten’s (1973) concept of Payoff-optimality is similar in spirit.

2 For games with more than two players, it may be reasonable to assume that coalitions short of the grand coalition also can agree on coalitional deviations in some subgame. By a similar recursive method (see Bernheim et al., 1987), this yields the concept of a Perfectly coalition-proof equilibrium in finite horizon games.
The former point is illustrated by Example 1, shown in Fig. 1, and analyzed in Section 3 (where the payoff matrix is provided). In the figure, denote by \(a_j, j = m, n, p, q \), action profiles and by \(v \) the payoff function of the stage game. Using Abreu’s (1988) concept of a simple strategy profile,\(^3\) the SPEs of interest are: \(\sigma_n := \sigma(\pi_n, \pi_n, \pi_n) \), \(\sigma_p := \sigma(\pi_p, \pi_n, \pi_n) \), and \(\sigma_q := \sigma(\pi_q, \pi_m, \pi_m) \), where \(\pi_j \) for each \(j \) denotes the infinite repetition of \(a_j \). Here, \(\sigma_n, \sigma_p \), and \(\sigma_q \) are all WRP, while \(\sigma_n \) is SRP and Consistent since for no history is profitable renegotiation feasible. Furthermore, \(\sigma_q \) is not SRP nor Consistent since both players prefer \(\sigma_n \) to some continuation profile of \(\sigma_q \). Finally, \(\sigma_p \) is not SRP since both players prefer \(\sigma_q \) to \(\sigma_p \), while (informally) \(\sigma_p \) is not Consistent since \(\sigma_n \) indirectly upsets \(\sigma_p \) through \(\sigma_q \).

Hence, according to the concepts of F&M and B&R, \(\sigma_n \) is renegotiation-proof, while \(\sigma_p \) is not. Note, however, that the SPE \(\sigma_p \) can be profitably renegotiated only to an SPE like \(\sigma_q \) which itself is nonviable when allowing for renegotiation (since after a deviation, the grand coalition will, rather than carrying out the punishment path \(\pi_m \), renegotiate to \(\sigma_n \)). Hence, if one were to insist that a nonviable SPE be defeated through renegotiation in some subgame by a viable equilibrium, one would have to disagree with the conclusion that \(\sigma_p \) in nonviable. The concept of renegotiation-proofness proposed in this paper departs from F&M’s SRP equi-

\(^3\) A simple strategy profile \(\sigma(\pi_0, \pi_1, \pi_2) \) is described by: (i) start with \(\pi_0 \), and (ii) if player \(i \in \{1, 2\} \) is the unique deviation from \(\pi_i \) (re)start \(\pi_i \), otherwise continue with \(\pi_i \); where \(\pi_j, j \in 0, 1, 2 \), are paths.
librium and B&R's Consistent equilibrium especially through requiring that a nonviable SPE be defeated through renegotiation by a viable one. In particular, in Example 1 it leads to the result that \(\sigma_p \) is also a renegotiation-proof equilibrium (see Claim 1 of Section 3).

The fact that the stationarity assumption underlying the definitions of SRP/Consistent equilibria may not be warranted is illustrated by Example 2, shown in Fig. 2, and analyzed in Section 4 (where the payoff matrix is provided). The SPEa of interest are \(\sigma_0 := \sigma(\pi_0, \pi_1, \pi_2), \sigma_1 := \sigma(\pi_1, \pi_1, \pi_2), \sigma_2 := \sigma(\pi_2, \pi_1, \pi_2), \) and \(\sigma_3 := \sigma(\pi_3, \pi_3, \pi_3), \) where \(\pi_j, j = 0, 3, \) denote the infinite repetition of \(a_j \), while \(\pi_j, j = 1, 2, \) denote the play of \(a_j \) once followed by \(\pi_0 \). Here all SPEa but the unanimously least attractive, viz. \(\sigma_3 \), have continuation equilibria which Pareto-dominate each other; i.e., they are not WRP and cannot be candidates for SRP/Consistent equilibria. Hence, these concepts uniquely determine as renegotiation-proof the SPE \(\sigma_3 \) which yields each player the lowest individually rational payoff, even though \(\sigma_0, \sigma_1, \) and \(\sigma_2 \) for every history Pareto-dominate \(\sigma_3 \). In other words, by ruling out the ability to inflict a mild punishment after a deviation (since it necessarily hurts all players and thereby leads to renegotiation), the concepts of F&M and B&R in this example predict that the grand coalition will in effect be forced to accept a harsh 'punishment' at every contingency. This prediction does not seem too reasonable and is not shared by the concept of the present paper. In fact, Claim 2 of Section 4 establishes \(\sigma_0, \sigma_1, \) and \(\sigma_2 \) as renegotiation-proof, while \(\sigma_3 \) is not.

The concept of renegotiation-proofness presented in this paper can be described as follows: Consider a social norm that for any history admits some subset of the SPEa in the remaining subgame. Call the grand coalition norm-observing if for a given history it chooses an SPE admitted by
the norm. Impose internal stability on such a norm by requiring that an SPE admitted by the norm cannot be profitably renegotiated by the grand coalition in a norm-observing manner at any future contingency. Impose external stability on such a norm by requiring that an SPE that violates the norm can be profitably renegotiated by the grand coalition in a norm-observing manner at some future contingency. A norm is called Pareto-perfect (PP) if it is both internally and externally stable. In games with a unique PP norm, a clear-cut definition of renegotiation-proofness is obtained: An SPE of a repeated game is Pareto-perfect if the unique PP norm admits this equilibrium given the initial history. In infinitely repeated games, however, multiple PP norms may occur. Then an SPE is said to be Pareto-perfect if at least one PP norm admits this equilibrium given the initial history.

In Example 1, there is a unique PP norm. Here it is the imposition of external stability which implies that if the SPE σ_p cannot for any history be profitably renegotiated to an SPE admitted by the PP norm, then the norm must admit σ_p; i.e., σ_p is Pareto-perfect. In Example 2, in contrast, the existence of multiple PP norms is essential for showing that the SPE σ_0 is Pareto-perfect. Each of these norms may then be nonstationary in the sense of letting the set of SPEs admitted in a subgame depend on the history leading up to that subgame. A PP norm that admits σ_0 for the initial history must have the property that for a history after which a punishment path, say π_1, is to be played, σ_0 can no longer be admitted, else internal stability is violated. The reason why the players respect the norm and let the profitable renegotiation possibility pass is explained by the external stability of the norm: If they were to renegotiate to σ_0, and at some future contingency, a punishment path, say π_2, were to be played, then the players would be able to renegotiate back to σ_0 in a norm-observing manner. Hence, given the norm and allowing for renegotiation, σ_0 is not viable when not admitted by the norm.

The paper is organized as follows. Section 2 formally defines the concept of a PP norm for repeated games. Note that since stationarity is not needed, the concept could at a notational cost have been defined for multistage games that are not strictly repeated. Attention is restricted to two-player games since for games with more than two players one would have to consider renegotiation by coalitions short of the grand coalition. Section 3 relates the set of PPEs admitted by stationary PP norms to the concepts of F&M and B&R, while Section 4 explores nonstationary PP norms by returning to Example 2. Proofs are contained in Section 5.

4 See Asheim (1988) where Bernheim et al.'s (1987) definition of a Perfectly coalition-proof equilibrium is extended to infinite horizon multistage games. This generalization is based on Greenberg’s (1990) Theory of Social Situations.
2. Definition of Pareto-Perfect Norms

The repeated game G consists of a T-fold play of the two-person normal form game $\Gamma := (A_1, A_2, v_1, v_2)$, where T is finite or infinite, and where A_i is the compact mixed action set and v_i the continuous payoff-function of player i, $i = 1, 2$. Writing $A = A_1 \times A_2$, the set of histories (subgames) of G is given by $H = \bigcup_{t=0}^{T-1} A^t$. Follow the convention that $A^0 = \{0\}$ and $(0, h) = (h, 0) = h$ for any $h \in H$. The set H is naturally ordered by \preceq, i.e., $h \preceq h'$ means that h equals or precedes h'.

A (strategy) profile of G is an element of a set $X = X_1 \times X_2$, where X_i is the set of mappings from H to A_i. A profile $x \in X$ determines a path $\pi(x) = (a^0(x), \ldots, a^{T-1}(x)) \in A^T$ and a payoff for each player i given by $u_i(x) := (1/T) \cdot \sum_{t=0}^{T-1} v_i(a_t(x))$ if $T < \infty$ and $u_i(x) := (1 - \delta) \cdot \sum_{t=0}^{\infty} \delta^t \cdot v_i(a_t(x))$ with $\delta \in (0, 1)$ if $T = \infty$. If $x, y \in X$, y is said to dominate x if $u_i(y) < u_i(x)$ for $i = 1, 2$. Denote by E the set of Subgame-perfect equilibria of G and by $U(E) := \{u(x) \mid x \in E\} \subseteq \mathbb{R}^2$ the set of SPE payoffs.

For any $h \in H$, let G^h denote the continuation game of G to be played given h (i.e., a $(T-t)$-fold play of Γ if $h \in A^t$), with X^h and E^h being the corresponding sets of profiles and SPEa. Hence, $G^h = G^{h'}$ if $h, h' \in A^t$, and $G^h = G$, $X^h = X$, and $E^h = E$ for any $h \in H$ if $T = \infty$. If $x \in X$, then $x^h \in X^h$ denotes the continuation profile that x induces on the subgame h (i.e., $x^h(k) = x(h, k)$ for any $k \geq 0$ where $(h, k) \in A^{i+5}$ is a history consisting of $h \in A^t$ followed by $k \in A^s$).

A social norm for G is a correspondence Σ assigning to each subgame $h \in H$ a subset, $\Sigma(h)$, of E^h. A norm Σ is said to be internally stable against renegotiation if

(IS) For any $h \in H$ and any $x \in \Sigma(h)$, there do not exist $k \geq 0$ and $y \in \Sigma(h, k)$ such that y dominates x^k.

A norm Σ is said to be externally stable against renegotiation if

(ES) For any $h \in H$ and any $x \in E^h \setminus \Sigma(h)$, there exist $k \geq 0$ and $y \in \Sigma(h, k)$ such that y dominates x^k.

A social norm is said to be Pareto-perfect if it is both internally and externally stable against renegotiation.

For a given repeated game G it is desirable to establish the existence and uniqueness of a PP norm. Existence and uniqueness can be estab-
lished if \(G \) is finitely repeated. Then the unique PP norm admits SPEs which are Pareto-perfect\(^7\) in the sense of Definition 1' of Section 5. This definition is due to Bernheim and Ray (1985).

Proposition 1. If \(G \) is a finitely repeated game, then there exists a unique Pareto-perfect social norm, \(\Sigma \), for \(G \). Furthermore, for all \(h \in H \), \(\Sigma(h) \) is the set of Pareto-perfect equilibria of \(G^h \) (according to Definition 1' of Section 5).\(^8\)

The definition of a PPE reproduced as Definition 1' in Section 5 cannot be generalized to infinitely repeated games since it is based on backward recursion from the last stage of the game. The characterization of a PPE given in Proposition 1 is, however, not based on backward recursion. Therefore, this characterization yields a definition of renegotiation-proofness covering both finitely and infinitely repeated games.

Definition 1. Consider a finitely or infinitely repeated game \(G \). An SPE \(\sigma \) is said to be a Pareto-perfect equilibrium of \(G \) if and only if there is a Pareto-perfect social norm, \(\Sigma \), for \(G \) such that \(\sigma \in \Sigma(0) \).

In infinitely repeated games, there is not, in general, a unique PP norm as illustrated by Example 2. In Definition 1 above, an SPE \(\sigma \) has been defined to be Pareto-perfect if \(\sigma \in \Sigma(0) \) for at least one PP norm, \(\Sigma \). Alternatively, one could require \(\sigma \in \Sigma(0) \) for any PP norm, \(\Sigma \). In Example 2, this latter definition would have lead to the nonexistence of PPEs, while the former admits existence. The choice among multiple PP norms should be considered exogenous to the game and hence not open for (re)negotiation by the players.\(^9\) No theory for selecting among multiple PP norms (i.e., refining the concept of a PPE) is offered.

A norm \(\Sigma \) for an infinitely repeated game \(G \) is said to be stationary if \(\Sigma(h) = \Sigma(0) \) for all \(h \in H \). Even though an infinitely repeated game is of a stationary nature, it does not generally follow that a PP norm for such a game is stationary. However, a PP norm can be nonstationary only if there exist multiple PP norms.

\(^7\) This concept is called Internally consistent by B&R and Relative strongly renegotiation-proof by Farrell and Maskin (1987). It is also contained in van Damme (1987). See Benoit and Krishna (1988) for a slightly different concept.

\(^8\) This characterization of a PPE for finitely repeated games is inspired from Greenberg's (1989) derivation of Bernheim et al.'s (1987) Coalition-proof equilibrium.

\(^9\) As with DeMarzo's (1988) concept of a Strong sequential equilibrium, a norm is influential even after a deviation by the grand coalition. However, here a deviating SPE is nonviable only if at some feasible future contingency the grand coalition can agree to stop the deviation and return to the norm. DeMarzo's norms are much more influential in the sense that a deviation is nonviable if the deviating coalition in some stage cannot agree to continue the deviation from the norm (i.e., renegotiation of an original profile is not allowed, only coordination in each stage).
Proposition 2. If for an infinitely repeated game G there exists a unique Pareto-perfect social norm Σ, then Σ is stationary.

Allowing for nonstationary PP norms ensures existence in Example 2. A general existence result is not available at this point and must await further research.

3. Stationary Pareto-Perfect Norms

For the definitions below, recall the following preliminaries. Based on Abreu et al. (1986) and van Damme (1987), denote by B the self-enforcement correspondence for an infinitely repeated game G: $B(V) := \{v \in \mathbb{R}^2 \mid \exists f: A \rightarrow V \subseteq \mathbb{R}^2$ such that v is a Nash equilibrium payoff of the game with payoffs $(1 - \delta)v(a) + \delta f(a)\}$. A set of payoffs V is said to support the payoff v if $v \in B(V)$, and furthermore, V is said to be self-generating if $V \subseteq B(V)$. If $x \in E$, then $C(x) := \{u(xh) \mid h \in H\}$ is bounded and self-generating. Conversely, if V is bounded and self-generating, then for any $v \in V$, there exists some $x \in E$ with $u(x) = v$ and $C(x) \subseteq V$. Say that $x \in E$ is generated by V if $C(x) \subseteq V$. Following B&R, say that V directly dominates V' (written $V \triangleright V'$) if there exists $v \in V$, $v' \in V'$ such that $v \triangleright v'$, while V indirectly dominates V' if there exists a finite sequence V_1, \ldots, V_m such that $V \triangleright V_1 \triangleright \cdots \triangleright V_m \triangleright V'$. Denote by V^+ the Pareto-boundary of V: $V^+ = \{u \in V \mid \text{there is no } u' \in V \text{ such that } u' \triangleright u\}$.

Definition 2 (F&M, B&R). An SPE σ of an infinitely repeated game G is said to be Weakly renegotiation-proof if and only if there do not exist $h, h' \in H$ such that σ^h dominates $\sigma^{h'}$.

It follows that σ is a WRP equilibrium if and only if σ is generated by some bounded payoff set W satisfying $W^+ = W \subseteq B(W)$. Call a bounded payoff set W WRP if $W^+ = W \subseteq B(W)$. Following Ray (1989), a bounded payoff set I is called Internally renegotiation-proof (IRP) if $I = B(I)^+$. Note that any IRP set is WRP (since $I = B(I)^+$ implies $I^+ = I \subseteq B(I)$), while the converse is not true.

Definition 3 (F&M). A WRP equilibrium σ of an infinitely repeated game G is said to be Strongly renegotiation-proof if and only if there do not exist $h \in H$ and a WRP equilibrium x such that x dominates σ^h.

It follows that σ is an SRP equilibrium if and only if σ is generated by some WRP set S which is not directly dominated by any other WRP set. Call a WRP set S SRP if S is not directly dominated by any other WRP set.
DEFINITION 4 (B&R). A WRP set \(R \) is said to be Consistent if and only if \(R \) indirectly dominates \(W \) whenever \(W \) is a WRP set indirectly dominating \(R \).

An SPE \(\sigma \) generated by a Consistent set \(R \) is called a Consistent equilibrium.

If \(a_n \) is a Nash equilibrium of the stage game, then \(\sigma(\pi_n, \pi_n, \pi_n) \) with \(\pi_n = (a_n, a_n, \ldots) \) is WRP. A Consistent equilibrium also exists under general conditions, while there are examples available with no SRP equilibrium (e.g., Example 1 of B&R). However, F&M provide for the latter concept a sufficient condition for existence for large enough \(\delta \), a condition that covers a large class of games.

If there exists a stationary PP norm, the PPEa admitted by such a norm are related to the concepts above in the following manner.

PROPOSITION 3. Let \(\Sigma \) be a stationary Pareto-perfect social norm for an infinitely repeated game \(G \). Then (a) \(U(\Sigma(0)) \) is an IRP set, which implies that \(U(\Sigma(0)) \) is a WRP set, (b) \(S \subseteq U(\Sigma(0)) \) for any SRP set \(S \), and (c) \(U(\Sigma(0)) \) directly dominates \(W \) whenever \(W \) is a WRP set directly dominating \(U(\Sigma(0)) \).

If there exists a unique (hence, stationary by Prop. 2) PP norm, the set of PPEa can be characterized as follows (compare with Definitions 2 and 3): An SPE \(\sigma \) of an infinitely repeated game \(G \) is said to be Pareto-perfect if and only if there do not exist \(h \in H \) and a Pareto-perfect equilibrium \(x \) such that \(x \) dominates \(\sigma^h \).

Weak renegotiation-proofness ensures internal stability, but due to its lack of external stability it seems too weak. In particular, van Damme (1989) shows that in a repeated prisoners’ dilemma, it does not rule out any SPE payoff. Definitions 1, 3, and 4 represent different ways of imposing external stability. The concepts defined therein coincide in the special case where any payoff efficient within the set of SPE payoffs can be supported by payoffs which are themselves efficient within the set of SPE payoffs.

PROPOSITION 4. Consider an infinitely repeated game \(G \) for which \(U(E)^+ \subseteq B(U(E)^+) \). Then there exists a unique and stationary Pareto-perfect social norm \(\Sigma \). Furthermore, \(\Sigma(0) = \{ \sigma \in E \mid C(\sigma) \subseteq U(E)^+ \} \). Finally, the sets of Pareto-perfect, SRP, and Consistent equilibria coincide and equal \(\Sigma(0) \).

Van Damme’s (1989) repeated prisoners’ dilemma satisfies the above condition.

As demonstrated by Example 1, illustrated in Fig. 1, it is not a general property that the concepts of Pareto-perfect, SRP, and Consistent equilibria coincide.
Example 1. This game consists of the infinite repetition of

<table>
<thead>
<tr>
<th></th>
<th>a_{2m}</th>
<th>a_{2n}</th>
<th>a_{2p}</th>
<th>a_{2q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{1m}</td>
<td>1, 3</td>
<td>-8, -8</td>
<td>-8, 0</td>
<td>-8, -8</td>
</tr>
<tr>
<td>a_{1n}</td>
<td>0, -8</td>
<td>2, 4</td>
<td>4, 0</td>
<td>7, -8</td>
</tr>
<tr>
<td>a_{1p}</td>
<td>-8, -8</td>
<td>-8, -8</td>
<td>3, 1</td>
<td>-8, -8</td>
</tr>
<tr>
<td>a_{1q}</td>
<td>-8, -8</td>
<td>-8, -8</td>
<td>4, 0</td>
<td>2</td>
</tr>
</tbody>
</table>

with discount factor $\delta = \frac{1}{2}$, and where mixed strategies are not admitted.

Write $a_j = (a_{1j}, a_{2j})$ and $\pi_j = (a_{1j}, a_{2j}, \ldots)$, $j = m, n, p, q$. Using Definitions 3 and 4 one can now show that $\sigma_n = \sigma(\pi_n, \pi_n, \pi_n)$ is the unique SRP and Consistent equilibrium. Still, the unique and stationary PP norm also admits $\sigma_p = \sigma(\pi_p, \pi_n, \pi_n)$.

Claim 1. For the game of Example 1 there is a unique and stationary Pareto-perfect norm Σ. Furthermore, $\Sigma(0) = \{\sigma \in E \mid \sigma(h) \in \{a_n, a_p\} \text{ for any } h \in H\}$.

By Proposition 3(b) it is general property that Strong renegotiation-proofness is stronger than Pareto-perfectness (according to Def. 1), provided that a stationary PP norm exists. One can argue that the requirement of Strong renegotiation-proofness is too strong for the same reason that Rubinstein’s (1980) concept of a Strong perfect equilibrium is too strong. In a two-player game, $\sigma \in E$ is a Strong perfect equilibrium if there do not exist $h \in H$ and $x \in X$ such that x dominates σ^h. This concept is too strong because, when not all profiles are considered viable, the existence of any profile x that dominates σ^h cannot imply that σ^h would be renegotiated if h were to be reached. It follows that we do not expect that allowing for renegotiation necessarily will take us to profiles that are not dominated by any profile. In the same vein, when not all WRP equilibria are considered viable, then the existence of any WRP equilibrium x that dominates σ^h cannot imply that σ^h would be renegotiated if h were to be reached. As above, we do not expect that allowing for renegotiation necessarily will take us to WRP equilibria that are not dominated by any WRP equilibrium.

Example 1 illustrates this point. Here the players do not wish to renegotiate σ_p in favor of the nonviable WRP equilibrium $\sigma_q = \sigma(\pi_q, \pi_m, \pi_m)$. Hence, σ_p should be considered renegotiation-proof even though it is dominated by some WRP equilibrium.

By permitting indirect domination (compare Def. 4 with Prop. 3(c)), the concept of a Consistent equilibrium also uses σ_q to eliminate σ_p: $C(\sigma_n)$ indirectly dominates $C(\sigma_p)$ (through $C(\sigma_q)$) while the converse is not true.
Again one can argue that a nonviable WRP equilibrium like σ_0 should not be used to upset σ_P.

4. NONSTATIONARY PARETO-PERFECT NORMS

Requiring Weak renegotiation-proofness entails an assumption of stationarity in the sense that the viability of an SPE x for the initial history is made to imply the viability of x in every subgame. By again considering Example 2, illustrated in Fig. 2, the inappropriateness of such an assumption is brought forward.

Example 2. This game consists of the infinite repetition of

<table>
<thead>
<tr>
<th></th>
<th>a_{20}</th>
<th>a_{21}</th>
<th>a_{22}</th>
<th>a_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{10}</td>
<td>3, 3</td>
<td>-5, -5</td>
<td>-5, -5</td>
<td>-5, 4</td>
</tr>
<tr>
<td>a_{11}</td>
<td>-5, -5</td>
<td>1, 2</td>
<td>-5, -5</td>
<td>-5, 3</td>
</tr>
<tr>
<td>a_{12}</td>
<td>-5, -5</td>
<td>-5, -5</td>
<td>2, 1</td>
<td>-5, 2</td>
</tr>
<tr>
<td>a_{13}</td>
<td>4, -5</td>
<td>2, -5</td>
<td>3, -5</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

with discount factor $\delta = \frac{1}{2}$, and where mixed strategies are not admitted.

Write $a_j = (a_{ij}, a_{2j})$ and define π_j and $\sigma_j, j = 0, 1, 2, 3$, as in the Introduction. Using Definition 2 one can now show that σ_3 with payoffs $(0, 0)$ is the unique WRP equilibrium; hence, it is also the unique SRP equilibrium as well as the unique Consistent equilibrium. However, $\sigma_0, \sigma_1,$ and σ_2 are three SPEs each of which, for every history, dominates the unique SPE admitted by the concepts of F&M and B&R. We proceed to make the following claim.

Claim 2. In the game of Example 2, $\sigma_0, \sigma_1,$ and σ_2 are all Pareto-perfect equilibria, while σ_3 is not.

The proof of Claim 2 shows that $\sigma_j, j = 0, 1, 2,$ correspond to three separate nonstationary PP norms, each of which admits only σ_j^b in the subgame h.

10 B&R motivate their definition by a three-player game (their Example 2) in which the relevant WRP sets dominate each other cyclically: $W_1 \subset W_2 \subset W_3 \subset W_1$. Hence, if the Consistence of a WRP set R required that R directly dominates W whenever W is a WRP set directly dominating R, then no nonempty Consistent set would exist. By instead requiring only indirect domination, $W_j, j = 1, 2, 3,$ all become Consistent. Even though the concept of Pareto-perfectness (according to Def. 1) does not permit such indirect domination, by allowing for nonstationary PP norms it can, in this example, be shown that for any $u \in W_1 \cup W_2 \cup W_3$, there exists a PPE σ such that $u(\sigma) = u$. (Proof of this claim is available on request from the author.)
Assuming the adoption of the PP norm corresponding to \(\sigma_0 = \sigma(\pi_0, \pi_1, \pi_2) \), the following informal story explains why attempts to renegotiate after a deviation from \(\pi_0 \) by, say, player 1 must fail given this particular norm. After such a deviation, the norm uniquely prescribes following \(\pi_1 \). The grand coalition profits if it is able to renegotiate to an SPE yielding \(\pi_0 \). Such an alternative SPE must, however, in turn be supported by a threat of not continuing \(\pi_0 \) if say, player 2 immediately deviates to \((a_{10}, a_{23})\). Since \((a_{10}, a_{23})\) is a simultaneous deviation from the first-period play of \(\pi_1 \) (i.e., \(a_1 \)) and hence is not punished by the simple strategy profile \(\sigma(\pi_0, \pi_1, \pi_2) \), the adopted norm at such a contingency uniquely prescribes the second-period continuation of \(\pi_1 \) (i.e., \(\pi_0 \)). Hence, if player 2, after the initial deviation from \(\pi_0 \) by player 1, suggests renegotiating to an SPE yielding \(\pi_0 \), player 1 will not go along, realizing that player 2 gains by immediately deviating to \((a_{10}, a_{23})\)—reaping a payoff in that stage of four instead of three (at a severe cost to player 1)—then securing through mutually advantageous and norm-observing renegotiation that \(\pi_0 \) be followed thereafter.

Claim 2 establishes the following proposition.

Proposition 5. Consider an infinitely repeated game \(G \). Then an SPE \(x \) being a WRP/SRP/Consistent equilibrium is neither sufficient nor necessary for \(x \) being a Pareto perfect equilibrium according to Definition 1.

The problem with the concepts of F&M and B&R in the context of Example 2 is that being a WRP equilibrium is considered a prerequisite for viability, such that nonviable SPEs need not be defeated through renegotiation by viable ones.

In Example 2, our results are in the spirit of Pearce's (1987) approach to renegotiation-proofness which has been further developed by Abreu et al. (1989) (APS) for the case of symmetric games:

Definition 5. (APS). An SPE \(\sigma \) of a symmetric infinitely repeated game \(G \) is said to be a Consistent bargaining equilibrium (CBE) if and only if \(l(x) \leq l(\sigma) \) for any SPE \(x \), where the function \(l \) is given by \(l(x) := \inf \{ \min \{ u_1, u_2 \} | (u_1, u_2) \in C(x) \} \).

Hence, by this definition, the punishments that support a CBE are not renegotiated because the players realize that any SPE must involve at least as hard a punishment for some player in some subgame. Example 2 shows a symmetric game (interchange the two middle rows) for which \(l(x) \leq 2 \) for any \(x \in E \). Hence, the PPEs \(\sigma_0, \sigma_1, \) and \(\sigma_2 \) are all CBE since \(l(\sigma_0) = l(\sigma_1) = l(\sigma_2) = 2 \). This indicates that the concept of a CBE may be given an interpretation in terms of nonstationarity.

11 This verbal explanation was suggested to me by Joseph Farrell.

12 See Bergin and MacLeod (1989) for the role of stationarity in an axiomatic approach to renegotiation-proofness. Note that the comparison with the concept of a CBE in Example 2
Example 2 illustrates a case in which it is hard to impose renegotiation-proofness since any SPE but the unanimously least attractive has continuation equilibria which dominate each other. Due to this inherent difficulty, the concept of a PPE has little bite in refining the concept of a SPE (see footnote 12). This contrasts Example 1 as well as the class of games covered by Proposition 4, which due to their uncomplicated nature give rise to a unique PP norm yielding a substantial refinement of subgame-perfectness.

5. Proofs

Lemma 1. Let G be a finitely or infinitely repeated game. If Σ is a Pareto-perfect social norm for G, then $\sigma \in \Sigma(0)$ implies $\sigma^h \in \Sigma(h)$ for any $h \in H$.

Proof. Let $x \in E$. Suppose $x^h \notin \Sigma(h)$ for some $h \in H$. By (ES), there exist $h' \geq h$ and $\sigma \in \Sigma(h')$ such that σ dominates $x^{h'}$. By (IS), $x \notin \Sigma(0)$. ■

For the proof of Proposition 1 we need to reproduce the following definition of a Pareto-perfect equilibrium of a finitely repeated game G.

Definition 1’ (Bernheim and Ray, 1985; B&R). (i) Let $h \in A^{t-1}$. Then $\sigma \in E^h$ is a PPE of G^h if and only if there is no $x \in E^h$ such that σ dominates x^h. By (IS), $x \notin \Sigma(0)$. ■

(ii) Let $h \in A^t$ with $0 \leq t < T - 1$. Assume that PPE has been defined for all games $G^{h'}$ with $h' > h$. Then $\sigma \in E^h$ is a PPE of G^h if and only if

(a) σ^k is a PPE of $G^{(h,k)}$ for all $k > 0$, and

(b) there is no $x \in E^h$ satisfying part (a) such that x domiates σ.

Let P^h denote the set of PPEs of G^h (according to Definition 1’). Also let $Q^h := \{\sigma \in E^h | \sigma^k \in P^{(h,k)} \text{ for all } k > 0\}$. By adapting the inductive proof of van Damme’s (1987) Theorem 8.7.1, it follows that $U(Q^h)$ is compact.

Lemma 2. For any $h \in H$ and any $\sigma \in P^h$, there do not exist $k \geq 0$ and $x \in P^{(h,k)}$ such that x dominates σ^k.

Proof. If $\sigma \in P^h$ and $k \geq 0$, then $\sigma^k \in P^{(h,k)}$ by Definition 1’(ii)(a). That $x \in P^{(h,k)}$ and x dominates σ^k is impossible by Definition 1’(i) and (ii)(b). ■

should not be drawn too far: Although σ, with payoffs $(0, 0)$ is not a PPE, there is a PPE σ' with payoffs $(0, 0)$, being described by: (i) start with π_1, and (ii) reward (!) any individual deviation from π_1 with the continuation equilibrium σ_0. The fact that the SPE σ', which is not a CBE, corresponds to a nonstationary PP norm is shown in the same way as in the proof of Claim 2.
Lemmas 2 and 3 are identical to (IS) and (ES).

Proof of Proposition 3. Write $P := \Sigma(0) = (\Sigma(h) \text{ for all } h \in H)$.

(a) By Lemma 1,

\[U(P) \subseteq B(U(P)), \tag{1} \]

and furthermore, for any $v \in B(U(P))^+$, there exists some $\sigma \in E$ with $u(\sigma) = v$ and $\sigma^h \in P$ for all $h > 0$. By (IS), there do not exist $h > 0$ and $x \in P$ such that x dominates σ^h. Thus, by (1) and (ES), $\sigma \in P$; i.e., $B(U(P))^+ \subseteq U(P)$. We need to establish that $U(P) \subseteq B(U(P))^+$. By (1), it is sufficient to show that

\[U(P) \cap (B(U(P)) \setminus B(U(P))^+) = \emptyset. \tag{2} \]

Therefore, suppose there exists $x' \in P$ with $u(x') \in B(U(P)) \setminus B(U(P))^+$. Then

(i) by (IS), there does not exist $y' \in P$ such that y' dominates x', and

(ii) by Lemma 1, there exists $y \in E$ with $y^h \in P$ for all $h > 0$ such that y dominates x'.
By (IS), there do not exist \(h > 0 \) and \(x \in P \) such that \(x \) dominates \(y^h \). By (i), there does not exist \(y' \in P \) such that \(y' \) dominates \(y \). Thus, by (ES), \(y \in P \). Since \(y \) dominates \(x' \), this contradicts (i). Hence, no such \(x' \) exists and (2) follows.

(b) By (a), \(U(P) \) is a WRP set, and hence, does not directly dominate the SRP set \(S \). It follows from (ES) that \(\sigma \in P \) for any \(\sigma \) generated by \(S \).

(c) Suppose \(U(P) \) does not directly dominate \(W \). It follows from (ES) that \(\sigma \in P \) for any \(\sigma \) generated by \(W \). Since \(U(P)^+ = U(P) \), \(W \) does not directly dominate \(U(P) \).

Proof of Proposition 4. Let \(\hat{\Sigma} \) be any PP norm. If \(\sigma \in \Sigma(h) \), there do not exist \(k \geq 0 \) and \(x \in E \supseteq \hat{\Sigma}(h, k) \) such that \(x \) dominates \(\sigma^k \). This establishes (IS) of \(\Sigma \) and shows by (ES) of \(\Sigma \) that \(\Sigma(h) \subseteq \hat{\Sigma}(h) \) for any \(h \in H \). For the class of games considered, \(U(E) \) is nonempty and compact (van Damme, 1987, Thm. 8.5.6). Hence, by the premise, if \(x \in E \setminus \Sigma(h) \), there exist \(k \geq 0 \) and \(\sigma \in \Sigma(h, k) \subseteq \hat{\Sigma}(h, k) \) such that \(\sigma \) dominates \(x^k \). This establishes (ES) of \(\Sigma \) and shows by (IS) of \(\Sigma \) that \(\Sigma(h) \subseteq \hat{\Sigma}(h) \) for any \(h \in H \). The sets of SRP and Consistent equilibria equal \(\Sigma(0) \) since there exists no WRP set directly dominating the WRP set \(U(E)^+ \), while if \(W \) is a WRP set such that \(W \subseteq U(E)^+ \), then \(U(E)^+ \) directly dominates \(W \).

Proof of Claim 1. Note first that there can be no SPE play off the diagonal. Also, \(\Sigma \) satisfies (IS). Let \(\hat{\Sigma} \) be any PP norm. By ES of \(\hat{\Sigma} \), \(\sigma_n \in \hat{\Sigma}(h) \), since there do not exist \(k \geq 0 \) and \(x \in E \supseteq \hat{\Sigma}(h, k) \) such that \(x \) dominates \(\sigma^k \). By (IS) of \(\hat{\Sigma} \), \(x \notin \hat{\Sigma}(h) \) if there exists \(k' \) such that \(x(k') = a_q \) since punishing player 1 requires that for some \(k \geq 0 \), \(\sigma_n \in \hat{\Sigma}(h, k) \) dominates \(x^k \). This shows by (ES) of \(\hat{\Sigma} \) that \(\Sigma(h) \subseteq \hat{\Sigma}(h) \) for any \(h \in H \). Finally, if there exists \(k' \) such that \(x(k') = a_q \), then there exist \(k \geq 0 \) and \(\sigma \in \Sigma(h, k) \subseteq \hat{\Sigma}(h, k) \) such that \(\sigma \) dominates \(x^k \). This establishes (ES) of \(\Sigma \) and shows by (IS) of \(\Sigma \) that \(\Sigma(h) \subseteq \hat{\Sigma}(h) \) for any \(h \in H \).

Proof of Claim 2. Note first that there can be no SPE play off the diagonal. Let \(\Sigma_j, j = 0, 1, 2 \), be defined by: for any \(h \in H, \Sigma_j(h) = \{ \sigma_j^h \} = \{ (\sigma(\pi_j, \pi_1, \pi_2))^h \} \). (IS) follows since, for any \(h \in H, \Sigma_j(h) \) contains a single element, viz., \(\sigma_j^h \). To show (ES), suppose \(x \) satisfies: there does not exist \(h \in H \) such that \(\sigma_j^h \) dominates \(x^h \). (i) For \(h \) such that \(\sigma_j(h) = a_0 \), \(x(h) = a_0 \), since otherwise \(\sigma_j^h \) dominates \(x^h \). (ii) For \(h \) such that \(\sigma_j(h) = a_1 \), \(x(h) \in \{ a_0, a_1, a_2 \} \). But \(x(h) = a_0 \) is not possible since \(h' = (h, (a_{10}, a_{23})) \) and \(x \) being an SPE would imply \(\pi(x^h) \neq \pi_0 \). However, \(\pi(\sigma_j^h) = \pi_0 \) since the simultaneous deviation to \((a_{10}, a_{23}) \) is not punished, implying that \(\sigma_j^h \) dominates \(x^h \). By the same argument, \(x(h) \neq a_2 \). Hence, \(x(h) = \sigma_j(h) \). (iii) For \(h \) such that \(\sigma_j(h) = a_2 \), we repeat the argument under (ii) to show that \(x(h) = \sigma_j(h) \). Hence, \(x = \sigma_j \). Similarly, \(x = \sigma_j^h \) if \(x \) satisfies: there does not exist \(k \geq 0 \) such that \(\sigma_j^{(h,k)} \) dominates \(x^k \). This shows (ES). Thus,
\[\Sigma_j, i = 0, 1, 2, \] are nonstationary PP norms and \(\sigma_j, j = 0, 1, 2, \) are PPEs according to Definition 1.

In order to show that \(\sigma_3 = \sigma(\pi_3, \pi_3, \pi_3) \) is not a PPE, suppose that there exists some PP norm, \(\Sigma_3, \) such that \(\sigma_3 = \sigma^h \in \Sigma_3(h) \) for all \(h \in H \) (see Lemma 1). Then, either there is an SPE \(x \in \Sigma_3(h) \) generating strictly positive payoffs, which contradicts (IS) of \(\Sigma_3, \) or there is no such SPE, which contradicts (ES) of \(\Sigma_3. \) ■

References

