On the Complex Structural Picture of the Ionic Conductor \(\text{Sr}_6\text{Ta}_2\text{O}_{11} \)

Niina Jalarvo,*†‡ Simone Casolo,§ Nadir Aliouane,‖⊥ Dirk Wallacher,¶ Ole Martin Løvvik,#□ and Truls Norby*†

†Department of Chemistry, University of Oslo, SMN/FERMiO, Gaustadalleen 21, NO-0349 Oslo, Norway
‡Jülich Centre for Neutron Science JCNS-1, Forschungszentrum Jülich GmbH, Outstation at Spallation Neutron Source at Oak Ridge National Laboratory, Chemical and Engineering Materials Division, P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6475, United States
§Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milan, Italy
¶Laboratory for Neutron scattering, Paul Scherrer Institute, CH5232 Villigen PSI, Switzerland
‖Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, D-14109 Berlin, Germany
⊥Laboratory for Neutron scattering, Paul Scherrer Institute, CH5232 Villigen PSI, Switzerland
‡Department of Chemistry, University of Oslo, SMN/FERMiO, Gaustadalleen 21, NO-0349 Oslo, Norway

ABSTRACT: \(\text{Sr}_6\text{Ta}_2\text{O}_{11} \) presents an interesting model system of a highly defective and disordered complex perovskite, exhibiting oxide ion conductivity at high temperatures as well as proton conductivity when hydrated by presence of water vapor. In this paper, we present a comprehensive structural study of \(\text{Sr}_6\text{Ta}_2\text{O}_{11} \) in its dry and hydrated state, based on DFT calculations and NPD measurements. At low temperatures, dry \(\text{Sr}_6\text{Ta}_2\text{O}_{11} \) has a tetragonal symmetry with ordered oxygen vacancies. The oxygen vacancy induces perturbations to its near surroundings, disturbing particularly the A site cations. As a consequence, the elaborate structural picture collapses at higher temperatures. The high-temperature structure has a cubic symmetry with fractionally occupied structural oxygen sites and disorder on the oxygen and strontium sublattices. The structure of the fully hydrated compound \(\text{Sr}_6\text{Ta}_2\text{O}_{10}(\text{OH})_2 \), was determined as monoclinic with significant distortions of the anion and metal cation sites.

INTRODUCTION

Oxygen deficient perovskites are of interest as potential electrolytes for solid oxide fuel cells (SOFCs)\(^1\)−\(^4\) exhibiting oxide ion (vacancy) conduction in dry atmospheres and in some cases proton conduction in wet atmospheres.\(^5\)−\(^7\) Structural features such as the distribution of oxygen vacancies affect hydration thermodynamics and the mobility of defects. Furthermore, a key question for proton conduction is their distribution in the hydrated analogues. Such aspects are often problematic to study by structural analysis tools since the concentrations of oxygen vacancies and protons are in many cases low and because most of the conventional techniques probing crystal structures are not adequate to detect light elements, for example, hydrogen or oxygen.

In this work, we report results of neutron powder diffraction (NPD) combined with density functional theory (DFT) first principle calculations of \(\text{Sr}_4\text{Ta}_2\text{O}_{11} \), which may also be written \(\text{Sr}_4(\text{Sr}_2\text{Ta}_2)\text{O}_{11} \) or \(\text{Sr}_4(\text{Sr}_2\text{Ta}_2)\text{O}_{11}V_{\text{O}} \) (where \(V_{\text{O}} \) denotes oxygen vacancy), that is, an oxygen deficient complex perovskite hosting one vacant out of 12 oxide ion sites. In humid atmospheres, this perovskite will hydrate into \(\text{Sr}_6\text{Ta}_2\text{O}_{11}\times\text{H}_2\text{O} \),\(^8\) which more correctly may be taken to be an oxohydroxide, \(\text{Sr}_6\text{Ta}_2\text{O}_{10}(\text{OH})_2 \). This material has considerable ionic conductivities\(^10\) and the relatively high concentration of oxygen vacancies and protons makes it possible to

Received: November 15, 2012
Revised: April 12, 2013
Published: April 15, 2013
exponentially study their distributions in the crystal structure, hence making the material an interesting model system for highly defective and disordered complex perovskite. Traditionally ion conduction in solids is described as thermally activated jumps. However, recent studies on oxygen deficient perovskites, for example, SrFeO$_3$$_{11−13}$, SrCoO$_3$$_{14,15}$, and CaFeO$_3$$_{11}$ ($0 \leq x \leq 0.5$), realize that ion conduction concept comprise diverse features like oxygen diffusion via lattice instabilities and internal dynamically triggered interphases. Better understanding of the defect distribution and the disorder in Sr$_6$Ta$_2$O$_{11}$ can help to understand related systems as well, where similar features concerning the origin and distribution of defects exist.

Amimitsa et al.16 studied the crystal structure of Sr$_6$Ta$_2$O$_{11}$ and Sr$_6$Ta$_2$O$_{10}$OH by X-ray powder diffraction (XRPD) at room temperature. Their work showed that the dry material has a cubic cryolite structure (perovskite related structure with B sites occupied with two different types of atoms in a 1:1 ratio and NaCl type ordering) with space group I4/mcm with only a small difference of the unit cell parameters compared to the dry cubic phase. The oxygen coordinates were determined with large uncertainties, and information about the oxygen vacancy distribution was not obtained. A Raman spectroscopy study of Sr$_6$Ta$_2$O$_{11}$ at room temperature showed signs of short-range disorder on the oxygen and cation lattices.17 Furthermore, Ashok studied the structure by transmission electron microscopy (TEM)18 and found in her samples domains containing different crystal structures: cubic, hexagonal, and tetragonal. The most relevant structure observed for the dry sample belongs to the hexagonal space group 6/mmm (tetragonal). The most relevant structure observed for the dry sample was determined as tetragonal with space group P4$_2$2$_1$2$_1$ (0.025 mm thickness) was used to prevent chemical reaction between the quartz and the sample. Because of the high incoherent cross section of hydrogen, very low hydrogen content ([OH] $<$ 1 ppm) quartz (SUPRASIL) was used to prevent chemical reaction between the quartz and the sample. The ND studies were performed at elevated temperatures (20−700 °C) at E9, the high-resolution powder neutron diffractometer (λ = 1.7973 Å), located at the BER II research reactor at the Helmholtz-Centre Berlin (former Hahn-Meitner-Institute).19 For the measurements at 20 and 400 °C, the powder was sealed into a cylindrical vanadium sample container with diameter of 8 mm. For the measurement at 700 °C, the sample was sealed into a quartz tube of 8 mm inner diameter, and an insert of gold foil (0.025 mm thickness) was used to prevent chemical reaction between the quartz and the sample. The background correction of the sample mounting. The diffraction patterns were analyzed with the Fullprof Rietveld refinement package software.20 The peak shapes were fitted with Thompson−Cox−Hastings pseudo-Voigt convoluted with axial divergence asymmetry function and the backgrounds were fitted with 12-coefficients Fourier cosine series over the whole 2θ range.

Neutron Powder Diffraction. The NPD studies were performed with Cu K$_{α1}$ radiation in a Bruker AXS D8 Advance diffractometer equipped with a Gobel mirror and a LynxEyeTM 1D strip detector at room temperature. The samples were packed in boron glass capillaries (0.3 mm Ø) and sealed in a glovebox filled with purified Ar (<1 ppm O$_2$, H$_2$O). Data collection acquired on rotating capillaries was restricted to the 8° \leq 2θ \leq 90° range with step-size of 0.015°.

DFT Calculations. Periodic calculations based on density functional theory were performed as implemented in the Vienna ab initio software package (VASP).21 A plane wave basis set with a cutoff energy of 800 eV and the Perdew−Burke−Ernzerhof (PBE)22 exchange-correlation functional in its spin polarized version were used for relaxations and total energy calculations. The projector-augmented wave (PAW) method within the frozen core approximation was used to describe the electron−core interaction,23 and we considered Sr electrons up to 3d and Ta up to 5s as the core. The Brillouin zone was mapped by a $9 \times 9 \times 9$ k-points grid within the Monkhorst-Pack scheme.24 Convergence of the electronic structures was ensured by requiring the energy difference in the self-consistent cycle to be below 10$^{-6}$ eV.

Simultaneous relaxation of the lattice constants and atomic position was performed, and the structures were considered as relaxed when the Hellmann−Feynman forces reached a threshold of 0.05 eV/Å. A 0.05 eV wide Gaussian smearing
for the electronic occupation was used for the relaxations, while final electronic structure calculations were performed using the linear tetrahedron method with Blöchl corrections.25

Ab initio molecular dynamics (MD) simulations were performed using DFT, but with the settings described above being reduced in order to keep the computational cost of the simulations affordable. In our tests, an energy cutoff of 300 eV and a single k point (the Γ point) were enough to give correct forces within ~ 0.1 eV/Å compared to the higher accuracy calculations acting on the ions. A canonical ensemble (NVT) approach and spin unpolarized functionals were used for the MD calculations.

\section*{RESULTS AND DISCUSSION}

\textbf{Structure for $\text{Sr}_6\text{Ta}_2\text{O}_{11}$}. As a starting geometry for DFT calculations, a double perovskite structure was built at its full occupancy. The unit cell, corresponding to two formula units of the hypothetical $\text{Sr}_6\text{Ta}_2\text{O}_{12}$, with a total of 40 atoms, was then subject to a full geometry optimization of the ionic positions and lattice vectors. Figure 1 shows the obtained result: a cubic structure with lattice constant $a = 8.698$ Å and space group $Fm\overline{3}m$ in which the Ta octahedra are slightly more contracted with respect to the Sr ones, the interatomic distances are $d(\text{Ta}−\text{O}) = 1.99$ Å and $d(\text{Sr}−\text{O}) = 2.36$ Å. We then built a $\text{Sr}_6\text{Ta}_2\text{O}_{11}$ cell by introducing oxygen vacancies, that is, removing 1 oxygen atom per formula unit from the $\text{Sr}_6\text{Ta}_2\text{O}_{12}$ structure obtained above. All the atomic positions were then relaxed to new equilibrium positions. This resulted in a structure with significantly lower symmetry, namely tetragonal within space group $P4/nmm$ (cell $a = 8.901$ Å, $b = c = 8.545$ Å), though we point out that oxygen vacancies in this model are necessarily ordered due to the periodic boundary conditions used in the calculation. The computed $\text{Sr}_6\text{Ta}_2\text{O}_{11}$ lattice structure is shown in Figure 2. The oxygen and A site Sr atoms are shifted toward the vacancy with respect to the $\text{Sr}_6\text{Ta}_2\text{O}_{12}$ structure.

The XRPD pattern at 20 °C and NPD patterns at 20, 400, and 700 °C of $\text{Sr}_6\text{Ta}_2\text{O}_{11}$ are shown in Figure 3. No major changes can be noted between the NPD patterns; the additional peaks in the 700 °C data are indexed to the gold pattern, arising from the gold insert, and the higher background is due to the quartz sample holder. The peak positions are shifted toward lower angles while heating due to thermal expansion of the compounds. Furthermore, the peak intensities of some reflections are varying as a function of temperature, which may indicate changes in occupancies of atomic sites. In the NPD patterns, the existence of a secondary phase, namely cubic SrO, is observed. The red vertical lines in the Figure 3a indicate the reflections arising from SrO. The secondary phase was not observed in the XRPD pattern, since the common laboratory XRPD used cannot distinguish such a minor phase. High diffuse background of the NPD patterns, but not of the XRPD pattern, is similar to what has been observed for various oxide ion conductors by NPD,26–29 and it has been described as substantial disorder of the oxygen sublattice.

The XRPD data was successfully indexed and refined (see Figure 4) with a previously suggested cubic model,16 $Fm\overline{3}m$, $a = 8.31615(19)$, (RF-factor $\sim 7.96\%$), which was also the model obtained by DFT calculations for the model composition $\text{Sr}_6\text{Ta}_2\text{O}_{12}$. This space group was then used for tentative refinements of the NPD data at 20 °C, however, giving rather bad results with RF-factor of about 18%. The tetragonal space group $P4/nmm$ obtained as a result of the DFT calculations was tested, but the refinements ruled it out as a feasible solution. A previously reported model, hexagonal $62m$, based on the TEM results,18 was also tested without any better success. A recent report about a related compound $\text{Sr}_{6−x}\text{Nb}_{2x}\text{O}_{11+x}$,26 suggests a new structural model with the cubic space group $Fm\overline{3}m$ including additional oxygen sites for such ion conducting cubic perovskites. Additional oxygen sites at Wyckoff position 96j were therefore added into the model (hereafter called O2 sites), improving the refinements remarkably. Also more freedom was given to the oxygen atoms located at the octahedral coordination around the B site cations, using the Wyckoff position 96k instead of 24e; these sites are hereafter called O1 sites. Reasonable refinements were obtained with such a model, giving an R-factor of 8.08%. The refinement is shown in Figure 5, and the results are given in Table 1. The obtained occupancy for the O1 site is 15.6%, for the O2 site 7.12%, and for the A site Sr cation 98%; the molecular formula for the refined composition can then be written as $\text{Sr}_{3.9}(\text{Sr}_2\text{Ta}_2)\text{O}_{10.9}$. An illustration of the structure is presented in Figure 6. The O1 sites are presented as full red circles, and the O2 sites are presented as red outlined circles with crosses. The O1 sites are...
in an arrangement similar to octahedral coordination around the B site cations, whereas each corner has four possible locations. Because of the low occupancy of the O1 sites, less than four out of six octahedral corners are occupied. The location of the vacant O1 sites could not be identified, and therefore we assume that they are statistically distributed, that is, no ordering of the vacancies exists at room temperature. About 30% of the oxygen atoms in this compound are located at O2 sites, around the A site Sr cations. Subsequently, the NPD data at 400 and 700 °C were refined using this structural model; results are given in Tables 2 and 3, respectively. The overall structure remains substantially the same. Besides the normal thermal expansion, we observe increasing deficiency at the O1 and O2 sites and at the cation A site.

The structure of the model composition of the hypothetical Sr₆Ta₂O₁₂ obtained from DFT calculations is similar to that one obtained from XRPD and NPD refinements for Sr₆Ta₂O₁₁. The main difference is that the NPD refinements suggest additional structural oxygen sites (O2 sites) with fractional occupancy and fractional occupancy of the O1 site with slight variation around the predicted octahedral positions. The occurrence of the O2 sites does not change the space group or the lattice parameters. As these additional oxygen sites have low occupancy, it is obviously a challenge to observe them by standard laboratory XRPD. The reasons why DFT calculations could not indicate such sites can be various. First of all, DFT calculations always present the situation at 0 K. We have chosen to perform our diffraction studies at higher temperatures in order to understand the structural features of this material in context with the ionic conductivity. Also, standard DFT calculations cannot consider partial occupancy of lattice sites and therefore we could not test the stability and occupancy of the O2 sites by DFT methods.

Therefore, we performed ab initio molecular dynamic simulations at 500 and 1000 K in order to extend our DFT results. The total time of the simulation was 9 ps, while the time step was set to 2.25 fs. Nevertheless, the resulting pair distribution functions did not show any counts at a Sr–O distance compatible with O2 sites. The DFT calculations...
A clear temperature dependency of the phase diagram over temperature is not available for our system, but earth metal niobate and tantalate systems. The full phase dependent phase equilibria of SrO shown as di-a Table 2. Recomposition Sr6Ta2O11. This was also the observation in the TEM studies,18 which were performed under conditions very different to the NPD measurements.

At low temperatures, the oxygen vacancies order so that the distance between them is the largest possible. At higher temperatures, the structural picture gets more complex; the structural picture becomes more complex; the structural picture becomes more complex.

Space group Fm3m. Lattice constants a = b = c = 8.38127(16) Å. Composition Sr5.3Ta2O10.2. Crystalline mole percent composition: Sr5.3Ta2O10.2/SrO/Au = 63.6/25.5/10.9%. χ² = 2.04; Rf(Sr5.3Ta2O10.2) = 8.61%; Rf(SrO) = 7.10%; Rf(Au) = 9.72%.

![Figure 6. Structure of Sr6Ta2O11 obtained from NPD O1 sites are shown as filled red balls and O2 site are shown as outlined red circles with crosses.](image)

Table 1. Refinement Results of Sr6Ta2O11 Obtained from NPD at 20 °C

<table>
<thead>
<tr>
<th>atom</th>
<th>Wyckoff notation</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>occupancy</th>
<th>B (Å²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr1</td>
<td>4a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>11.012(303)</td>
</tr>
<tr>
<td>Sr2</td>
<td>8c</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.816</td>
<td>5.609(165)</td>
</tr>
<tr>
<td>Ta</td>
<td>4b</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>2.175(95)</td>
</tr>
<tr>
<td>O1</td>
<td>96k</td>
<td>0.0261(8)</td>
<td>0.0261(8)</td>
<td>0.2418(13)</td>
<td>0.145</td>
<td>2.902(301)</td>
</tr>
<tr>
<td>O2</td>
<td>96j</td>
<td>0.3627(24)</td>
<td>0.5</td>
<td>0.190(2)</td>
<td>0.068</td>
<td>4.813(513)</td>
</tr>
</tbody>
</table>

“Space group Fm3m. Lattice constants a = b = c = 8.38127(16) Å. Composition Sr5.3Ta2O10.2. Crystalline mole percent composition: Sr5.3Ta2O10.2/SrO/Au = 63.6/25.5/10.9%. χ² = 2.04; Rf(Sr5.3Ta2O10.2) = 8.61%; Rf(SrO) = 7.10%; Rf(Au) = 9.72%.

Table 2. Refinement Results of Sr6Ta2O11 Obtained from NPD at 400 °C

<table>
<thead>
<tr>
<th>atom</th>
<th>Wyckoff notation</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Occupancy</th>
<th>B (Å²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr1</td>
<td>4a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6.405(229)</td>
</tr>
<tr>
<td>Sr2</td>
<td>8c</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.95</td>
<td>5.476(118)</td>
</tr>
<tr>
<td>Ta</td>
<td>4b</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1.845(96)</td>
</tr>
<tr>
<td>O1</td>
<td>96k</td>
<td>0.0282(4)</td>
<td>0.0282(4)</td>
<td>0.2366(5)</td>
<td>0.15</td>
<td>1.012(188)</td>
</tr>
<tr>
<td>O2</td>
<td>96j</td>
<td>0.3654(14)</td>
<td>0.5</td>
<td>0.191(1)</td>
<td>0.07</td>
<td>1.347(385)</td>
</tr>
</tbody>
</table>

“Space group Fm3m. Lattice constants a = b = c = 8.34585(12) Å. Composition Sr5.3Ta2O10.2. Crystalline mole percent composition: Sr5.3Ta2O10.2/SrO = 69.4/30.6%. χ² = 2.71; Rf(Sr5.3Ta2O10.2) = 6.81%; Rf(SrO) = 5.65%; Rf(Au) = 9.72%.
hydrogen atoms have been added to a supercell containing two formula units in order to respect the given stoichiometry. Several combinations of hydrogen placed at Wyckoff 96j positions were tested, following the trends of previously reported H/D positions in similar compounds.31−33 After relaxation of both ionic positions and lattice vectors, only minimal deviations from the cubic symmetry were found. The most stable structure obtained from the calculations was within space group Cm, shown in Figure 8. The energy gain in the transition from cubic to monoclinic is 0.44 eV per formula unit. The deviation from 90° angles is less than 2°, which is smaller than the numerical uncertainty of the relaxation procedure; there is thus a possibility that the structure actually is orthorhombic. Lattice positions obtained from DFT optimization are shown in Table 4. From Figure 8, it is possible to see how all the octahedra are tilted and distorted with the both B site cations shifted away from the hydrogen atom. Contrary the A site Sr atom positions shift toward hydrogen. The hydrogen atom forms a 0.99 Å long covalent bond with one oxygen atom in the (100) direction along the edge of a Ta octahedron.

CONCLUSIONS

The archetype $\text{Sr}_6\text{Ta}_2\text{O}_{11}$ has a tetragonal symmetry with ordered oxygen vacancies at low temperatures. The oxygen vacancy introduces anharmonicity to the thermal displacement parameters evolving to increasing distortions on the oxygen and strontium sublattices. At room temperature and above, additional structural oxygen sites are found with fractional occupancy. The high-temperature phases have higher symmetry (cubic) because the oxygen vacancies are statistically distributed. The disorder of the oxygen sublattice increases with increasing temperatures along with increasing ionic conductivities. The archetype structure of the hydrated compound $\text{Sr}_6\text{Ta}_2\text{O}_{10}(\text{OH})_2$ was obtained by DFT.
can be located at specific sites in the structure, and they distort the structure more than the oxygen vacancies. At higher temperatures, the hydrated material exhibits disordered features and the proton locations could not be addressed.

■ Author Information

Corresponding Author
NJ) Tel: +1-865-241-3107. E-mail: njalarvo@fz-juelich.de.
(T.N.) Tel: +47-22840654, E-mail: t.e.norby@kjemi.uio.no.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

■ Acknowledgments

The authors would like to thank Dr. Simon Kimber and Dr. Dimitri N. Argyriou for help with the NPD measurements at E9 and for the discussion about the data interpretation. This work was supported by the FRINAT project 171157/V30 "Hydrogen in oxides (HYDROX)" of the Research Council of Norway and by the European Commission under the seventh Framework Programme through the "Research Infrastructure" action of the "Capacities" Programme, NMI3-II Grant 283883.

■ References