is an ideal time to summarize the remarkable developments in particle physics to date and the concepts on which they rest, so that the next generation of explorers will have not only a solid foundation to stand on but also a dependable roadmap to guide them.

The second edition of Chris Quigg’s *Gauge Theories of the Strong, Weak, and Electromagnetic Interactions* provides just such a foundation. Building on the 1983 first edition of the work, which was widely used as a textbook in advanced graduate courses, the new iteration achieves a new level of excellence and completeness that will make it a valued resource for graduate students and researchers. Quigg, who has made important theoretical contributions to the field, makes a different kind of useful and lasting contribution by writing this book.

Quigg starts with a summary of such basic concepts as constituents of matter, symmetries and conservation laws, and the idea of gauge invariance. That material essentially lays out the advances in the field that took place in the 1960s, when physicists introduced the idea of quarks and began to appreciate that the hidden symmetries in the weak force were local symmetries. He then describes developments such as the parton model of hadrons, non-abelian gauge theories, and spontaneous symmetry breaking—insights that led to the completion of the standard model in the following decade. Next Quigg discusses how gauge theories cured the pathological high-energy behavior of electroweak models and provides a detailed presentation of the various predictions of the standard model and how they were experimentally verified.

The book goes on to discuss neutrino oscillations and their implications for neutrino masses and other phenomena, and it covers all the essentials. Several books do a good job of presenting neutrino masses and their implications for physics, astrophysics, and cosmology, but Quigg’s summary emphasizes neutrino masses as a pointer to physics beyond the standard model. The final chapter ventures beyond the standard model into the realm of grand unified theories. It discusses how such theories could provide a future pathway for the field and how discovery of baryon-number violation could provide a test of grand unification.

The chapters are thoughtfully arranged. For example, Quigg follows his presentation of the weak interaction of leptons with a discussion of the weak interactions of quarks; only then does he consider the quarks’ strong interactions. That last, complex topic rightfully takes the largest number of pages. The presentation is quite lucid and includes just enough technical details. Each of the main chapters is followed by a robust bibliography for readers who want more in-depth material.

On the whole, Quigg’s book stands out for being clear and thorough while avoiding the heavy use of technical details that could obscure the basic physics. All the essential core topics of modern particle theory are covered. Several other books deal with aspects beyond the standard-model physics, such as supersymmetry, a topic not covered by Quigg, but none of those books are as up-to-date. *Gauge Theories of the Strong, Weak, and Electromagnetic Interactions* will, for many years, remain as a standard textbook in particle theory. I highly recommend it for a two-semester advanced graduate course in particle physics and as a valuable addition to the collection of every particle physicist.

Rabindra N. Mohapatra
University of Maryland

Superconducting State

Mechanisms and Properties

Vladimir Z. Kresin, Hans Morawitz, and Stuart A. Wolf

The discovery of superconductivity—a combination of ideal conductance and ideal diamagnetism—has significantly changed condensed-matter physics and materials science. Superconductivity has fostered the development of new concepts in physics and new applications. And it has done so even though physicists have yet to devise a reliable microscopic explanation of the superconductivity in the high-T_c materials whose discovery precipitated a paradigm shift in the field. They haven’t even reached consensus regarding the dominating mechanisms that govern superconductivity in the recently discovered new classes of high-T_c superconductors. As a result, experimental research into new superconductors that possess high-T_c and that can carry large current is an important driving force in materials science.

The field is now at a stage where a comprehensive survey is of extreme importance. That task is fulfilled by *Super-
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 129.240.85.243 On: Tue, 03 Jun 2014 11:33:43

conduting State: Mechanisms and Properties. Authors Vladimir Kresin, Hans Morawitz, and Stuart Wolf present an up-to-date and comprehensive review of theory and experiments related to key features of superconductivity in conventional and new materials. They discuss mechanisms of superconductivity based on lattice, magnetic, and electronic degrees of freedom, and they analyze relevant experiments based on those models. More of a topical review than a systematic textbook, Superconducting State focuses on mechanisms of superconductivity and the related spectroscopies and omits such subjects as vortex physics and Josephson tunneling. That concentration is an advantage; with its restricted scope and modest size, the book will be accessible to everyone involved in the physics of superconductivity and magnetism.

Superconducting State differs significantly from Mechanisms of Conventional and High Tc Superconductivity (Oxford University Press, 1993), a previous work by the same authors; the primary difference is the descriptions of new superconducting materials discovered and investigated since the first work’s publication. Those new materials include iron-based pnictide and chalcogenide superconductors, magnesium diboride, and ruthenium cuprates. The authors compare specific features in the new materials with those known from the more well-studied cuprates and pay special attention to granular and homogeneouse superconductors.

Other advantageous features include the presentation of several novel aspects of superconductivity, including multiband superconductors, the pseudogap state, and unusual isotope effects. I also particularly liked the theoretical sections, which are concise, clearly explained, and not overloaded with lengthy calculations. The book will be an inestimable resource for researchers and advanced students who are acquainted with many-body quantum theory, particularly the Green’s function techniques. I would also highly recommend Superconducting State to physicists, chemists, and materials scientists involved in the investigation and development of superconducting materials and devices.

Yuri Galperin
University of Oslo
Oslo, Norway

Nanoquest I

Ion Beam Etching, Ion Beam Deposition, R.F. & D.C. Sputtering, and S.I.M.S. all on a single platform

- New generation RF ICP Ion Sources
- Up to 12 distinct sputter sources
- Load-lock for up to 4” substrates
- Heated/cooled substrate stage
- S.I.M.S. End Point Detection

Exploring Quantum Mechanics

A Collection of 700+ Solved Problems for Students, Lecturers, and Researchers

Victor Galitski, Boris Karnakov, Vladimir Kogan, and Victor Galitski Jr

I like to start my undergraduate quantum mechanics course with a quote from physicist David Griffiths: “I do not believe one can intelligently discuss what quantum mechanics means until one has a firm sense of what quantum mechanics does.” Exploring Quantum Mechanics: A Collection of 700+ Solved Problems for Students, Lecturers, and Researchers by Victor Galitski, Boris Karnakov, Vladimir Kogan, and Victor Galitski Jr provides a wide range of opportunities to learn what quantum mechanics does through an impressive collection of solved problems.

The book originates from a smaller work assembled by Galitski and Kogan in the mid 1990s; that work was then expanded, 20 years later, by Galitski in